45 research outputs found

    Podoplanin Gene Disruption in Mice Promotes in vivo Neural Progenitor Cells Proliferation, Selectively Impairs Dentate Gyrus Synaptic Depression and Induces Anxiety-Like Behaviors.

    Get PDF
    Podoplanin (Pdpn), a brain-tumor-related glycoprotein identified in humans and animals, is endogenously expressed in several organs critical for life support such as kidney, lung, heart and brain. In the brain, Pdpn has been identified in proliferative nestin- positive adult neural progenitor cells and in neurons of the neurogenic hippocampal dentate gyrus (DG), a structure associated to anxiety, critical for learning and memory functions and severely damaged in people with Alzheimer’s Disease (AD). The in vivo role of Pdpn in adult neurogenesis and anxiety-like behavior remained however unexplored. Using mice with disrupted Pdpn gene as a model organism and applying combined behavioral, molecular biological and electrophysiological assays, we here show that the absence of Pdpn selectively impairs long-term synaptic depression in the neurogenic DG without affecting the CA3-Schaffer’s collateral-CA1 synapses. Pdpn deletion also enhanced the proliferative capacity of DG neural progenitor cells and diminished survival of differentiated neuronal cells in vitro. In addition, mice with podoplanin gene disruption showed increased anxiety-like behaviors in experimentally validated behavioral tests as compared to wild type littermate controls. Together, these findings broaden our knowledge on the molecular mechanisms influencing hippocampal synaptic plasticity and neurogenesis in vivo and reveal Pdpn as a novel molecular target for future studies addressing general anxiety disorder and synaptic depression-related memory dysfunctions

    De novo Vessel Formation Through Cross-Talk of Blood-Derived Cells and Mesenchymal Stromal Cells in the Absence of Pre-existing Vascular Structures

    Get PDF
    Background: The generation of functional blood vessels remains a key challenge for regenerative medicine. Optimized in vitro culture set-ups mimicking the in vivo perivascular niche environment during tissue repair may provide information about the biological function and contribution of progenitor cells to postnatal vasculogenesis, thereby enhancing their therapeutic potential. Aim: We established a fibrin-based xeno-free human 3D in vitro vascular niche model to study the interaction of mesenchymal stromal cells (MSC) with peripheral blood mononuclear cells (PBMC) including circulating progenitor cells in the absence of endothelial cells (EC), and to investigate the contribution of this cross-talk to neo-vessel formation. Materials and Methods: Bone marrow-derived MSC were co-cultured with whole PBMC, enriched monocytes (Mo), enriched T cells, and Mo together with T cells, respectively, obtained from leukocyte reduction chambers generated during the process of single-donor platelet apheresis. Cells were embedded in 3D fibrin matrices, using exclusively human-derived culture components without external growth factors. Cytokine secretion was analyzed in supernatants of 3D cultures by cytokine array, vascular endothelial growth factor (VEGF) secretion was quantified by ELISA. Cellular and structural re-arrangements were characterized by immunofluorescence and confocal laser-scanning microscopy of topographically intact 3D fibrin gels. Results: 3D co-cultures of MSC with PBMC, and enriched Mo together with enriched T cells, respectively, generated, within 2 weeks, complex CD31C /CD34C vascular structures, surrounded by basement membrane collagen type-IVC cells and matrix, in association with increased VEGF secretion. PBMC contained CD31C CD34CCD45dimCD14 progenitor-type cells, and EC of neo-vessels were PBMC-derived. Vascular structures showed intraluminal CD45C cells that underwent apoptosis thereby creating a lumen. Cross-talk of MSC with enriched Mo provided a proangiogenic paracrine environment. MSC co-cultured with enriched T cells formed "cellin-cell" structures generated through internalization of T cells by CD31C CD45dim = cells. No vascular structures were detected in co-cultures of MSC with either Mo or T cells. Conclusion: Our xeno-free 3D in vitro vascular niche model demonstrates that a complex synergistic network of cellular, extracellular and paracrine cross-talk can contribute to de novo vascular development through self-organization via co-operation of immune cells with blood-derived progenitor cells and MSC, and thereby may open a new perspective for advanced vascular tissue engineering in regenerative medicine

    Expression patterns of protein C inhibitor in mouse development

    Get PDF
    Proteolysis of extracellular matrix is an important requirement for embryonic development and is instrumental in processes such as morphogenesis, angiogenesis, and cell migration. Efficient remodeling requires controlled spatio-temporal expression of both the proteases and their inhibitors. Protein C inhibitor (PCI) effectively blocks a range of serine proteases, and recently has been suggested to play a role in cell differentiation and angiogenesis. In this study, we mapped the expression pattern of PCI throughout mouse development using in situ hybridization and immunohistochemistry. We detected a wide-spread, yet distinct expression pattern with prominent PCI levels in skin including vibrissae, and in fore- and hindgut. Further sites of PCI expression were choroid plexus of brain ventricles, heart, skeletal muscles, urogenital tract, and cartilages. A strong and stage-dependent PCI expression was observed in the developing lung. In the pseudoglandular stage, PCI expression was present in distal branching tubules whereas proximal tubules did not express PCI. Later in development, in the saccular stage, PCI expression was restricted to distal bronchioli whereas sacculi did not express PCI. PCI expression declined in postnatal stages and was not detected in adult lungs. In general, embryonic PCI expression indicates multifunctional roles of PCI during mouse development. The expression pattern of PCI during lung development suggests its possible involvement in lung morphogenesis and angiogenesis

    Lycopene: total-scale literature landscape analysis of a valuable nutraceutical with numerous potential applications in the promotion of human and animal health

    Get PDF
    Lycopene intake from tomatoes and other food sources has multiple potential health benefits. This report aimed to evaluate the current research literature on lycopene concerning human and animal health. The electronic Web of Science Core Collection database was searched with (lycopene*) AND (health* OR illness* OR disease* OR medic* OR pharma* OR drug* OR therap*). The resulted 3972 papers were analyzed with the aid of bibliometric software. Besides the United States, the lycopene papers received global contributions, particularly from China, Italy, India, and Spain. Examples of frequently mentioned chemicals/chemical classes were carotenoid, beta carotene, alpha carotene, beta cryptoxanthin, and alpha tocopherol. Examples of frequently mentioned medical conditions were prostate cancer, cardiovascular disease, and obesity. Published scientific articles reveal the diverse potential of lycopene in prompting human and animal health, and the knowledge on the bioactivities of this phytoche(undefined)info:eu-repo/semantics/publishedVersio

    Administracja, zarządzanie i handel zagraniczny w warunkach integracji. MateriaƂy konferencyjne - Zarządzanie bezpieczeƄstwem

    Get PDF
    Ze wstępu: "BezpieczeƄstwo jest w coraz wyĆŒszej cenie. Zajmują się nim naukowcy oraz praktycy z rĂłĆŒnych dziedzin. W najszerszym wymiarze pojęcie „bezpieczeƄstwo” sprowadzić moĆŒna do sƂów: stan niezagroĆŒenia, spokoju, pewnoƛci. Takie ogĂłlne ujęcie problematyki bezpieczeƄstwa sprawia, ĆŒe rĂłĆŒne podmioty podchodzą wybiĂłrczo do tych bardzo waĆŒnych zarĂłwno dla pojedynczych ludzi, jak i spoƂeczeƄstwa zagadnieƄ. Inaczej postrzegają i interpretują bezpieczeƄstwo politycy, prawnicy, ekonomiƛci, wojskowi, policjanci, lekarze, pedagodzy, a inaczej zwyczajni ludzie. W ich ujęciu bezpieczeƄstwo to: 1) stan ƛwiadomoƛci czƂowieka, w ktĂłrym czuje się on wolny od jakichkolwiek zagroĆŒeƄ, pociągający za sobą poczucie spokoju i komfortu; 2) niczym niezakƂócone wspóƂistnienie czƂowieka z innymi ludĆșmi i ƛrodowiskiem przyrodniczym; 3) stan bez lęku i niepokoju o siebie i innych, pewnoƛć jutra; 4) brak zagroĆŒenia utraty zdrowia, mienia i ĆŒycia, komfort psychiczny umoĆŒliwiający realizację ĆŒyciowych marzeƄ i celĂłw; 5) sytuacja, w ktĂłrej czƂowiekowi nic nie zagraĆŒa, a w nagƂych i nieprzewidzianych sytuacjach moĆŒe liczyć na pomoc i wsparcie innych."(...

    CX3CL1 (fractalkine) protein expression in normal and degenerating mouse retina: in vivo studies

    Get PDF
    We aimed to investigate fractalkine (CX3CL1) protein expression in wild type (wt) retina and its alterations during retinal degeneration in mouse model (rd10) of retinitis pigmentosa. Forms of retinal protein CX3CL1, total protein and mRNA levels of CX3CL1 were analyzed at postnatal days (P) 5, 10, 14, 22, 30, 45, and 60 by Western blotting and real-time PCR. Cellular sources of CX3CL1 were investigated by in situ hybridization histochemistry (ISH) and using transgenic (CX3CL1cherry) mice. The immunoblots revealed that in both, wt and rd10 retinas, a membrane integrated approximately 100 kDa CX3CL1 form and a cleaved approximately 85 kDa CX3CL1 form were present at P5. At P10, accumulation of another presumably intra-neuronal approximately 95 kDa form and a decrease in the approximately 85-kDa form were observed. From P14, a approximately 95 kDa form became principal in wt retina, while in rd10 retinas a soluble approximately 85 kDa form increased at P45 and P60. In comparison, retinas of rd10 mice had significantly lower levels of total CX3CL1 protein (from P10 onwards) and lower CX3CL1 mRNA levels (from P14), even before the onset of primary rod degeneration. ISH and mCherry reporter fluorescence showed neurons in the inner retina layers as principal sites of CX3CL1 synthesis both in wt and rd10 retinas. In conclusion, our results demonstrate that CX3CL1 has a distinctive course of expression and functional regulation in rd10 retina starting at P10. The biological activity of CX3CL1 is regulated by conversion of a membrane integrated to a soluble form during neurogenesis and in response to pathologic changes in the adult retinal milieu. Viable mature neurons in the inner retina likely exhibit a dynamic intracellular storage depot of CX3CL1

    Resveratrol and Its Effects on the Vascular System

    No full text
    Resveratrol, the phenolic substance isolated initially from Veratrum grandiflorum and richly present in grapes, wine, peanuts, soy, and berries, has been attracting attention of scientists and medical doctors for many decades. Herein, we review its effects on the vascular system. Studies utilizing cell cultures and pre-clinical models showed that resveratrol alleviates oxidative stress and inflammation. Furthermore, resveratrol suppresses vascular smooth muscle cell proliferation, promotes autophagy, and has been investigated in the context of vascular senescence. Pre-clinical models unambiguously demonstrated numerous vasculoprotective effects of resveratrol. In clinical trials, resveratrol moderately diminished systolic blood pressure in hypertensive patients, as well as blood glucose in patients with diabetes mellitus. Yet, open questions remain, as exemplified by a recent report which states that the intake of resveratrol might blunt certain positive effects of exercise in older persons, and further research addressing the framework for long-term use of resveratrol as a food supplement, will stay in demand

    uPAR

    No full text

    Localization of CX3CL1 mRNA expressing cells in the retina and brain of wt and rd10 mice.

    No full text
    <p>(A-D). Light micrographs of radial cryosections through mouse central retina probed with a DIG-labeled anti-sense CX3CL1 riboprobe. In both, wt (A) and rd10 (B) mouse retinas, CX3CL1 mRNA signal is present exclusively in the neurons of the ganglion cell layer (GCL) and the inner- and outermost areas of the inner nuclear layer (INL). The outer nuclear (photoreceptor) layer is devoid of CX3CL1 signal at the time points examined (P22 and P30). Enlargements showing juxtanuclear localization of mRNA in the cells of inner nuclear (C) and ganglion (D) cell layers in wt mouse retina. (E-G). Distribution of CX3CL1 mRNA expressing neurons in wt mouse hippocampus. Light micrographs of a paraffin section used as positive control. (E). Numerous CX3CL1 mRNA-positive neurons are located in all hippocampal subfields of the pyramidal (PCL) and in the dentate granule cell layers (GCL). (F). Higher magnification of the dentate gyrus tips and of hilus. (G). Enlargement showing high levels of CX3CL1 mRNA expression within the grey matter of the cerebral cortex. PCL, pyramidal cell layer; GCL, layer of ganglion cells in dentate granule cell layer; H, hilus; T, dentate gyrus tips. Cells expressing CX3CL1 mRNA are visualized as of brown product accumulations in cryosections and red-brown in paraffin sections. The different color of nuclei staining (blue in cryosections and purple in paraffin sections) is due to a hemalaun counterstaining. Scale bars represent: 50 ”m (A, B), 35 ”m (C, D), 250 ”m (E), 125 ”m (F) and 25 ”m (G).</p

    Western blot analysis of fractalkine protein expression in mouse neural retina at P5 until P60 being representative of five independent experiments.

    No full text
    <p>Blots were re-probed with anti-GAPDH antibody. (A). Fractalkine membrane integrated (100-kDa) and soluble (85-kDa) protein forms are present in both control (wt) and rd10 retina lysates during development at P5. (B). Accumulation of presumably intracellular (95-kDa) protein form is seen in both wt (B) and rd10 (C) developing neural retina at P10. Remarkably, no cleaved (85-kDa) protein form was associated with membrane integrated (100-kDa) form in both rd10 and wt retina lysates at P10. Both wt and rd10 retinas show lower to beneath detection level of 100-kDa form and higher level of 95-kDa form at P14 through P60 (D-G). Increased level of 85-kDa form is clearly detectable in rd10 retinas at P45 and P60 (G). Histogram showing relative percent levels of each of the three CX3CL1 protein forms in wt retina (H) and degenerating rd10 retina (I). Data are expressed as percent of densitometric arbitrary units. Values are mean ± SEM, (n = 5). In rd10 retinas, positive correlation between the relative levels of a ∌100-kDa and corresponding 85-kDa bands was found at P45 and P60 (Pearson product-moment correlation coefficient r = 0.683, n = 12, p = 0.014 in RD10 retina at P45 and r = 0.882, n = 9, p = 0.0017 at P60) as well as for the relative levels of a 100-kDa and 95-kDa bands (r = 0.928, n = 11, p<0.0001 at P14, r = 0.861, n = 9, p = 0.0029 at P22, r = 0.892, n = 9, p = 0.0012 at P30, r = 0.966, n = 12, p<0.0001 at P45, and r = 0.628, n = 12, p = 0.0288 at P60 in rd10 retina). The degree of association between the levels of 95 kDa and 85 kDa protein band was r = 0.712, n = 12, p = 0.0094 at P45 and r = 0.907, n = 9, p = 0.0007 at P60. It was not, however, possible, to make similar analysis for the wild type retina samples, as the level of the ∌95-kDa protein form was the highest and the levels of cleaved and full-length forms were far below the limit of detection.</p
    corecore