540 research outputs found
The role of SmpB protein in trans-translation
AbstractThe function of SmpB protein in the trans-translation system was evaluated using the well-defined cell-free translation system consisting of purified ribosome, alanyl-tRNA synthetase and elongation factors. The analysis showed that SmpB protein enhances alanine-accepting activity of tmRNA and that SmpB protein and tmRNA are sufficient to complete the trans-translation process in the presence of translational components. Moreover, SmpB is indispensable in the addition of tag-peptide onto ribosomes by tmRNA. In particular, the A-site binding of tmRNA is inhibited in the absence of SmpB
Synthesis of Fluorescent Gelators and Direct Observation of Gelation with a Fluorescence Microscope
Fluorescein-, benzothiazole-, quinoline-, stilbene-, and carbazole-containing fluorescent gelators have been synthesized by connecting gelation-driving segments, including l-isoleucine, l-valine, l-phenylalanine, l-leucine residue, cyclo(l-asparaginyl-l-phenylalanyl), and trans-(1R,2R)-diaminocyclohexane. The emission behaviors of the gelators were investigated, and their gelation abilities studied against 15 solvents. The minimum gel concentration, variable-temperature spectroscopy, transmission electron microscopy, scanning electron microscopy, fluorescence microscopy (FM), and confocal laser scanning microscopy (CLSM) were used to characterize gelation. The intermolecular hydrogen bonding between the N-H and C=O of amide, van der Waals interactions and pi-pi stacking play important roles in gelation. The colors of emission are related to the fluorescence structures of gelators. Fibrous aggregates characterized by the color of their emission were observed by FM. 3D images are produced by the superposition of images captured by CLSM every 0.1 mu m to a settled depth. The 3D images show that the large micrometer-sized aggregates spread out three dimensionally. FM observations of mixed gelators are studied. In the case of gelation, two structurally related gelators with the same gelation-driving segment lead to the gelators build up of the same aggregates through similar hydrogen-bonding patterns. When two gelators with structurally different gelation-driving segments induce gelation, the gelators build up each aggregate through individual hydrogen-bonding patterns. A fluorescent reagent that was incorporated into the aggregates of gels through van der Waals interactions was developed. The addition of this fluorescent reagent enables the successful observation of nonfluorescent gelators' aggregates by FM.ArticleCHEMISTRY-A EUROPEAN JOURNAL.22(47):16937-16947(2016)journal articl
Ribosome Rescue and Translation Termination at Non-Standard Stop Codons by ICT1 in Mammalian Mitochondria
Release factors (RFs) govern the termination phase of protein synthesis. Human
mitochondria harbor four different members of the class 1 RF family:
RF1Lmt/mtRF1a, RF1mt, C12orf65 and ICT1. The homolog of the essential ICT1
factor is widely distributed in bacteria and organelles and has the peculiar
feature in human mitochondria to be part of the ribosome as a ribosomal
protein of the large subunit. The factor has been suggested to rescue stalled
ribosomes in a codon-independent manner. The mechanism of action of this
factor was obscure and is addressed here. Using a homologous mitochondria
system of purified components, we demonstrate that the integrated ICT1 has no
rescue activity. Rather, purified ICT1 binds stoichiometrically to
mitochondrial ribosomes in addition to the integrated copy and functions as a
general rescue factor, i.e. it releases the polypeptide from the peptidyl tRNA
from ribosomes stalled at the end or in the middle of an mRNA or even from
non-programmed ribosomes. The data suggest that the unusual termination at a
sense codon (AGA/G) of the oxidative-phosphorylation enzymes CO1 and ND6 is
also performed by ICT1 challenging a previous model, according to which
RF1Lmt/mtRF1a is responsible for the translation termination at non-standard
stop codons. We also demonstrate by mutational analyses that the unique
insertion sequence present in the N-terminal domain of ICT1 is essential for
peptide release rather than for ribosome binding. The function of RF1mt,
another member of the class1 RFs in mammalian mitochondria, was also examined
and is discussed
MEATabolomics: Muscle and Meat Metabolomics in Domestic Animals
In the past decades, metabolomics has been used to comprehensively understand a variety of food materials for improvement and assessment of food quality. Farm animal skeletal muscles and meat are one of the major targets of metabolomics for the characterization of meat and the exploration of biomarkers in the production system. For identification of potential biomarkers to control meat quality, studies of animal muscles and meat with metabolomics (MEATabolomics) has been conducted in combination with analyses of meat quality traits, focusing on specific factors associated with animal genetic background and sensory scores, or conditions in feeding system and treatments of meat in the processes such as postmortem storage, processing, and hygiene control. Currently, most of MEATabolomics approaches combine separation techniques (gas or liquid chromatography, and capillary electrophoresis)âmass spectrometry (MS) or nuclear magnetic resonance (NMR) approaches with the downstream multivariate analyses, depending on the polarity and/or hydrophobicity of the targeted metabolites. Studies employing these approaches provide useful information to monitor meat quality traits efficiently and to understand the genetic background and production system of animals behind the meat quality. MEATabolomics is expected to improve the knowledge and methodologies in animal breeding and feeding, meat storage and processing, and prediction of meat quality
MEATabolomics: Muscle and Meat Metabolomics in Domestic Animals
In the past decades, metabolomics has been used to comprehensively understand a variety of food materials for improvement and assessment of food quality. Farm animal skeletal muscles and meat are one of the major targets of metabolomics for the characterization of meat and the exploration of biomarkers in the production system. For identification of potential biomarkers to control meat quality, studies of animal muscles and meat with metabolomics (MEATabolomics) has been conducted in combination with analyses of meat quality traits, focusing on specific factors associated with animal genetic background and sensory scores, or conditions in feeding system and treatments of meat in the processes such as postmortem storage, processing, and hygiene control. Currently, most of MEATabolomics approaches combine separation techniques (gas or liquid chromatography, and capillary electrophoresis)âmass spectrometry (MS) or nuclear magnetic resonance (NMR) approaches with the downstream multivariate analyses, depending on the polarity and/or hydrophobicity of the targeted metabolites. Studies employing these approaches provide useful information to monitor meat quality traits efficiently and to understand the genetic background and production system of animals behind the meat quality. MEATabolomics is expected to improve the knowledge and methodologies in animal breeding and feeding, meat storage and processing, and prediction of meat quality
ãã¬ã¡ãã€ã·ãããœããã·ã³ãªããªã§ãŠããŠããããªã±ã«ãã€ã®
äºçä¿åœŠïŒ1983ïŒã¯åæã®åæããïŒããåœã«ã¯ïŒãããŠãŒãããããïŒããã«ååšã®æ·±ã¿ãæåŸãããããæèæ
床ããããšãïŒããããçºããæèãšããŠææ¡ãããããã¯éåžžã®æèã®ããæ¹ãšã¯å€§ããç°ãªããªããïŒãããæèã§ããããšã«ãããŠã¯å€ããããªãïŒãŠããŒã¯ãªæ§åŒã®ææ¡ã§ãã£ããæ¬è«æã¯ïŒãçºãããšããæèã®ããæ¹ãå¿ççæ³ãšããå¶ã¿ã®æ¬è³ªçãªç解ã«åœ¹ç«ã€ãã®ã§ããããšãäºäŸç 究ã«ãã£ãŠå®èšŒãããã®ã§ãããæ¬è«æã¯å
š8ç« ããæ§æãããã第1ç« ã¯ïŒæ¬è«ãžã®å°å
¥ãšããŠå€§ããåé¡æèµ·ããããéåžžã®æèã¯ïŒåé¢ãïŒã¯ã£ãããããïŒåããæ¬è³ªãšãïŒããããã¯ãã®ãããªæèã®æ©èœãäžå¿ã«çããããšã§æ§ã
ãªãã®ãèªèã»ç解ã»æäœããããã«ãªã£ããããã¯ç§åŠçãªæèæ³ãšçµã³ã€ãïŒçŸåšã®ããããã®ç掻ã極ããŠè±ãã«çºå±ããããäžæ¹ã§ïŒãã®ãããªæèã®ããæ¹ãããŸãã«æå¹ã§ãã£ãããã«ïŒããããã¯ãã以å€ã®æèã®ããæ¹ããŸã£ããèæ
®ã§ããªããªã£ãŠããŠããããã®æèã®åãã¯ïŒçŸä»£äººã®æ±ããå¿ççãªåé¡ãšå¯æ¥ã«çµã³ã€ããŠããããšãæšæž¬ãããããã£ãŠïŒéåžžã®æèãšã¯ç°ãªãæèã®ããæ¹ãïŒå¿çèšåºåŠçãªæèã«ãããŠåãäžããŠæ€èšããæ矩ããããšè¿°ã¹ãã第2ç« ã§ã¯ïŒãŸãæ¬è«ã®åæãšãªãã¹ãæèã®åºæ¬æ©èœãNeumann, EïŒ1971ïŒã®ãæèã®èµ·æºå²ããããŒã¹ã«ããªãã確èªãããNeumannã¯äžçã®æ§ã
ãªç¥è©±ãç¥ç€ŒãåæãïŒäººã®ç²Ÿç¥çºéãšã¯ïŒæèãç¡æèããæ確ã«åé¢ããŠããããã»ã¹ã§ããããšãæããã«ãããããããNeumannã¯ïŒæèäœç³»ã®æ¬è³ªããè·é¢ããšãããšãïŒããªãã¡ïŒåé¢ãïŒã¯ã£ãããããïŒåãã«ãããšããããã®æèã®åºæ¬æ©èœã¯ïŒäœéšçã«ã¯ãèŠããããšã«ãã£ãŠãã£ãšãçŽæªçã«ãããããããæ¬ç« ã§ã¯ïŒæ§ã
ãªå¿çåŠçç 究ãåŒçšãïŒãèŠãããšããããšãæèã®æãéèŠãªæ©èœã§ããïŒäººã人ãããããŠããäºè±¡ã§ããããšãè«èšŒããã以äžããïŒæ¬è«æã§ã¯éåžžã®æèã®ããæ¹ããèŠããæèãšè¡šçŸããã 次ã«ïŒäºçä¿åœŠïŒ1983ïŒã®ãæèã®æ¬è³ªããããçºããæèã®å®çŸ©ã確èªããããçºããæèãšã¯ïŒäºç©ã®ãæ¬è³ªãçèŠå®æ§ãæŠæ§åããŠïŒããã«çŸæããè«æŒ ããæ
趣空éã®äžã«ååšã®æ·±ã¿ãæåŸããããšããæèäž»äœçæ
床ã§ããããšãè¿°ã¹ããããã¯éåžžã®ïŒåé¢ãïŒã¯ã£ãããããïŒæèãšã¯ç°ãªããïŒæ確ãªèªæã®é¢äžãããïŒãŸãäžã€ã®æ¹åæ§ããã£ããã®ã§ãããããšããïŒåãªãããããç¶æ
ãå¹»èŠåŠæ³ç¶æ
ãšã¯æ確ã«åºå¥ãããããšã瀺ããã第3ç« ã§ã¯ïŒåæã®äžã«ãçºãããã©ã®ããã«è© ã¿èŸŒãŸããŠãããã«ã€ããŠç¢ºèªãïŒãçºããæèã®å®çžã«ã€ããŠããã«è©³ããè«ãããããšããšããåœã«ã¯ïŒæ¢
éšæã®é·éšã®ãšãã«ãéšå£å¿ã¿ãããç¿ä¿ãããïŒãããã転ããŠãé·éšïŒãªãããã¯çŠæ¬²æã®ãã®æããæå³ããŠããããããïŒæ°å€ä»åæéã®æ代ã«ãªã£ãŠïŒãçºããã¯ãæ¬è³ªãã®ãã€èŠå®æ§ãè¯å®ããªããæ¶å»ããæ段ãšããŠå±éãå§ãããããªãã¡ïŒãçºããã«ã¯ïŒãèŠããããšã§æ¬è³ªãæããã«ãªã£ãŠããŸãããšãé¿ããå¹æãããïŒçµæçã«ïŒããã¯è©©çæ
ç·ãå«ãäžçš®ç¬ç¹ãªååšäœéšãããããæèæ
床ãšãªã£ãã®ã§ããããããã®çµç·¯ã«ã€ããŠïŒå®éã®åæãåŒããªãã説æãããç¶ããŠïŒåæã®åæããïŒãçºããæèã®ç¹åŸŽãäžç¹ææããã第äžç¹ã¯ïŒãçºãããšããããããã®èŠªè¿æ§ã«ã€ããŠã§ããããããããããšã¯ïŒãéãèäœããé¢ãæãåºãããšãïŒãäœãã«å¿å¥ªãããŠïŒãŒãããããããšããªã©ãæå³ããå€èªã§ããããçºãããšãããããããåæã«è© ã¿èŸŒãŸããŠããåæã®åæããïŒãã®æãã®å®è³ªçç¶æ
ãããããããã§ïŒãããå°ãæ¹æ³çæ
床ããçºãããšèããããšãã§ããããšã瀺ããã第äºç¹ã¯ïŒãçºãããä»çŸåšã®çŒåã®äžçã®ããšãæã£ããã®ã ããªãïŒãããæªæ¥ã圌岞ãªã©çŸå®ã«ã¯ãªãäžçãæ³åããŠæã£ãŠãããã®ã«å€ãããšãçºèŠããããšã§ããããã®ç¹ã«ã€ããŠïŒè¯çµã西è¡ã®åæãäŸã«æãïŒãçºããã¯ïŒãã¡ãïŒã®äžçãžã¢ãããŒãããããã®æèæ
床ã§ããããšãè¿°ã¹ãã第äžç¹ã¯ïŒãçºããã¯ïŒãã®æ
趣ãä»è
ã«å
±æããŠãããããšãéèŠã§ããããšãææããç¹ã§ãããå±±åŽæ£åïŒ2008ïŒã¯ïŒããåœã§ã¯ããããèžè¡è¡šçŸãä»è
ãåæãšããŠè£œäœãããŠããïŒåæããŸãæéã«åããããããšãåæãšããŠããç¹ã§åæ§ã§ãããšè¿°ã¹ããããã¯è¥¿æŽã®èžè¡è¡šçŸãïŒç¥ãšã®é¢ä¿ã§ïŒãã®çŸããèªäœãè®ããããšã§å®çµãïŒä»è
ãžã®æ³¢åã¯äºæ¬¡çãªãã®ãšèããããŠããããšãšå¯Ÿç
§ããªããŠããããã®å±±åŽã®è«ãæŽçšããŠïŒãçºããã¯ããšããšèšèªåãã¥ããæ
趣ãä»è
ã«å
±æããŠãããããšã«ãã£ãŠã¯ãããŠæç«ããäžçš®ã®ã³ãã¥ãã±ãŒã·ã§ã³ãšèããããããšãè«èšŒããã以äžã®äžç¹ã¯ïŒåœåã®äºçã®ãçºããæèã§ã¯è§ŠããããŠããªãã£ãç¹ã§ããïŒæ¬ç 究ã§æ°ããèŠåºãããç¹åŸŽã§ããã第4ç« ã¯ïŒæ¬è«æç¬èªã®èŠ³ç¹ãšããŠïŒæ¥æ¬äººã®ç³ã«å¯Ÿããããããæ¹ãããçºããæèã®å®çžãæããã«ãããç³ãç¥ãç¥ç€Ÿã®å€ããç³ã«ãŸã€ããç¥è©±äŒèª¬ã®è±å¯ããªã©ïŒæ¥æ¬äººãç³ã«å¯ŸããŠå®æçã»çŸç芳ç¹ããç¹å¥ã«åŒ·ãé¢å¿ããã£ãŠããããšã¯æããã§ãããæ¬ç« ã§ã¯ïŒç«å®å¯ºãæ±çŠå¯ºã®ç³åºãäŸã«æãïŒããåœã®åºã§ã¯ç³ã極ããŠéèŠãªåœ¹å²ãæ
ã£ãŠããããšïŒãã€ïŒããã§ã¯ç³ããããã象城åŠçãªè§£éãåæãæãããã«é
眮ãããŠããããšã瀺ãïŒç³ã¯ãèŠãã察象ã§ã¯ãªãïŒãçºãããããã«çœ®ãããŠããã®ã§ã¯ãªãããšè¿°ã¹ããããã¯ç³ã®ãã€ïŒèšèªåãæããããªè€é粟åŠãªã€ã¡ãŒãžããã®ãŸãŸã«åãæ¢ããæ¥æ¬äººã®ææ§ã瀺ããŠããããŸãäžç°ïŒ2010ïŒãUedaïŒ2012ïŒã¯ïŒããåœã«ã¯ç³åºã ãã§ãªãïŒæ¥åžžã®çºäžã«ãåæçãªæ
床ãæããããªãããµããç³ããã眮ãããŠããããšãèŠåºãããããã¯ïŒçŸä»£ã®æ¥æ¬äººãããŸã ã«ãçºããæèã倧äºã«ããŠããäžã€ã®ããããã§ããããšãè¿°ã¹ããããã«ã¯ïŒæäžæ¥æš¹ïŒ2005ïŒã®ãæ¥ã
移åããè
èã®ããã¡ãããç³ããåãäžãïŒçŸä»£ã®ç©èªã®äžã«ãç³ãšãçºããã®é¢ä¿ãæãããŠããããšã瀺ããã以äžïŒæ¬ç« ã§ã¯ç³åºã®ç³ïŒçºäžã®ç³ïŒç©èªã®äžã®ç³ãªã©ããïŒæ¥æ¬äººãç³ã«å¯ŸããŠãçºããããšããæ
床ã§æ¥ããŠãããã®ãå€ãããšãè«èšŒãããããã«ïŒç³ããçºãããããšã«ãã£ãŠïŒéåžžã«æ·±ãäœéšãåŸãŠãããšæšæž¬ã§ããããšãè¿°ã¹ãããã®ãããªç³ã«å¯Ÿããæ
床ã¯ïŒæ¥æ¬äººã®æèã®ããæ¹ã®ç¹åŸŽããªãç¹ã ãšèããããã第5ç« ãšç¬¬6ç« ã¯ïŒæ¬è«æã®äžå¿èª²é¡ã§ãããçºããæèã®å¿ççæ³ã«ãããæ矩ã®æ€èšããããªã£ãã第5ç« ã§ã¯ïŒãå
çãªã€ãã·ãšãŒã·ã§ã³ã«ããããèŠããããšã®æå³ãïŒäžç°, 2009ïŒã§æ±ã£ã匷迫ç¥çµçã®ç·æ§ã®äºäŸãé¡æãšãããæ¬ç« ã§ã¯ïŒæ°žé å°å¹Žå
åã«ãšããããã¯ã©ã€ãšã³ãã®å€¢ã«äœåºŠãçŸãããèŠãããšããè¡çºã®æå³ãäžå¿ã«èå¯ããã倢ã§ã¯ïŒãŸããèŠããªã®çŠæ¢ããç Žãããšã«ãã£ãŠæ¯æ§ã®åŠå®çåŽé¢ããèŠãããšããã¢ããŒãããããããã粟ç¥åæçã«ã¯ïŒãã®ãããªå¹»æ»
ãéããŠèªç«ãéæããããšèãããããïŒå®éã®é¢æ¥ã§ã¯ãã®æ®µéã§åé¡ã解決ãããšã¯èšããªãã£ããé¢æ¥ãé²ããšïŒã¯ã©ã€ãšã³ãã¯ãä»è
ãšäžç·ã«æµ·ãçºããã倢ãèŠãããã®å€¢ã®åŸïŒçç¶ã¯æ¶å€±ãïŒã¯ã©ã€ãšã³ãã¯ç€ŸäŒãžåå ããããšãã§ãããæ¬äºäŸã®çµéããïŒãæ¯ãªããã®ãã®åã®åŒ·ãããåœã§ã¯ïŒïŒåé¢ãïŒã¯ã£ãããããïŒããªãã¡ïŒãèŠããæèã®ããæ¹ã ãã§ã¯ååã§ãªãïŒãããããããŒã¹ã«ããŠããæ
趣ãæãåããçºããæèãŸã§ç²åŸããããšãå¿
èŠã ã£ããšèãããããç¹ã«ïŒæ¬äºäŸã§ã¯ãã£ãã西æŽçãªïŒå³ããïŒãèŠããæèãçµãåŸïŒãçºããæèãç²åŸããããšãéèŠã§ãã£ãããšãè¿°ã¹ãã第6ç« ã¯ïŒãäžå¹Žæã®ã€ãã·ãšãŒã·ã§ã³ã®ããæ¹ãèãããïŒäžç°, 2012ïŒã§åãäžãã女æ§ã®äºäŸãé¡æãšãããã¯ã©ã€ãšã³ãã¯äžå¹Žæã«ãã£ãŠïŒãããŸã§ãšã¯éãæ°ããæèã®ããæ¹ãåãå
¥ããå¿
èŠã«è¿«ãããŠãããããã¯ïŒãã¡ãã®äžçïŒãžã®ç§»è¡ãšããããŒããšããŠç®±åºã«ãã£ãŠç¹°ãè¿ãè¡šçŸãããããã®ããŒãã«å¯ŸããŠïŒæåã¯ã移è¡ããå
ãïŒãã¡ãã®äžçïŒã«äœãããããéèŠã ã£ãããããïŒã¯ã©ã€ãšã³ãã«ãšã£ãŠãã®ãããªãæããã«ããããšããæèãã¯å
ã®åé¡ã«ã€ããŠååãªçŽåŸãäžããããšãã§ãããã®ã§ã¯ãªãã£ããã¯ã©ã€ãšã³ãã¯çµç€ã®ç®±åºã§ïŒïŒãã¡ãïŒå²žã«ããªã¢åã眮ãïŒæ©ãæ¶ããŠæž¡ãããšãã§ããããã«ããããããïŒçµå±çŽåŸã§ããïŒæ¬¡ã®åã«ããªã¢åãäžèŒªã®å°ããªè±ã«çœ®ãæãïŒããããäœããããšãããµã€ã³ãã ãšè¡šçŸãããããã¯åã«ãããŸãã«ãããšããããšã§ã¯ãªãïŒãããïŒãã¡ãïŒãžã®ç§»è¡ãæ¯ãã倧ããªæ±ºæã§ãã£ãããšãããã£ããèå¯ã§ã¯ïŒæ¬äºäŸã®ããã»ã¹ããèŠããæèãããçºããæèãžãšããæ§é ã®äžã§ç解ã§ããããšã瀺ããã第7ç« ã§ã¯ïŒãããŸã§ã®è°è«ããµãŸããŠïŒãçºããæèã®ãã€å¿çèšåºçãªæ矩ãšãã®ç¬èªæ§ãæŽçããã第7ç« ç¬¬1ç¯ã§ã¯ã¯ã©ã€ãšã³ãã®ç²åŸãã¹ãæ°ããæèãšãã芳ç¹ããïŒãçºããæèããã€å¿çèšåºçæ矩ããŸãšãããæ¬è«æã®äºäŸãšè°è«ãéããŠïŒãçºããæèã«ã¯åŒ·ããããèŠããæèã®äžé¢æ§ãè£ããšããæ²»ççæ矩ãããããšãããã£ãããã®ãçºããæèã®ãã€ãæèã®äžé¢æ§ãè£ãããšããåãã¯ïŒJung, C.Gã®è£åãšã¯ç°ãªãä»çµã¿ã§ããããšã説æããã第7ç« ç¬¬2ç¯ã§ã¯ã»ã©ãã¹ãã®æ²»ççæ
床ãšãã芳ç¹ããïŒãçºããæèã®ãã€å¿ççæ³äžã®æ矩ããŸãšãããããã¯ïŒç¬¬äžã«ïŒçç¶ã«å¯Ÿãããçºãããšè¡šçŸã§ãããã®ã§ïŒåœã®åé¡ã«å¯ŸããïŒçŠç¹ãåœãŠãªãã§ãŒããããšããåãæ¹ãæå³ãããã®ã§ããããã®æ²»ççæ
床ã¯ïŒæ£®ç°çæ³ã®ãäžåããJohn Keatsã®negative capabilityãšè¿ããã®ã§ããããšãè¿°ã¹ãã第äºã«ïŒå山修ïŒ2005ïŒã®ãå
±èŠããšããæŠå¿µãæŽçšããŠïŒããšãã«çºããããšãã«å«ãŸããæ²»ççæ矩ãè«èšŒãããããã¯ç¬¬3ç« ã§ïŒãçºãããä»è
ããã®å
±æãåŸãŠã¯ãããŠæç«ãããšææããç¹ãšè»ãäžã«ããŠããããŸãïŒã»ã©ãã¹ãã®æ
床ãšããŠã®ããšãã«çºããããšãã¯ïŒç®±åºçæ³ãããåœã§æ¥µããŠçºå±ããããšãšé¢ä¿ããããšèããããããšã瀺åãããæ¬ç« ã®ãŸãšããšããŠïŒãçºããæèã¯ïŒã¯ã©ã€ãšã³ãã®çç¶ç解ãã»ã©ãã¹ãã®æ²»çææ³ãšããé¢ããå¿ççæ³ã«ãããéèŠãªåé¡ã解ãéµãšãªãããå¯èœæ§ã瀺åãããã第8ç« ã¯ïŒæ¬ç 究ã®çŸä»£çæ矩ãè«ããŠçµè«ãšããããçºããæèããããåé¡ã¯ïŒäºäŸã®åå¥æ§ãè¶ãïŒçŸä»£äººã®æ±ããå
±éã®å¿çç課é¡ã瀺ããŠãããšèããããšãã§ãããããã«ã€ããŠïŒè¿å¹Žæ¥éã«çºéãããæ°ååºçå蚺æãã®åé¡ãåãäžããŠè«ããã蚺æãšã¯ãç¥ããããšïŒããªãã¡ãèŠããæèãã®ãã®ïŒã ãïŒãããæšãé²ããŠãã£ãŠè§£æ±ºããªãåé¡ãããããšã«ããããã¯æ°ãã€ãå§ããŠããã®ã§ãããããã«ïŒçŸä»£äººã®å
±éã®èª²é¡ã¯ïŒéåžžã«åŒ·åã«ãããããæ¯é
ããŠãããããŸã§ã®ïŒæèãã©ãã€ã ïŒããã¯ãããïŒæ°ããæèã®ããæ¹ã暡玢ããããšã ãšèšãããšãã§ãããæ¬è«æã§ã¯ïŒãçºããæèã«ãã®æ°ããå¯èœæ§ãæ¢ã£ãã®ã§ããããã ãïŒçã®åé¡ã¯ïŒãçºããæèãéèŠã ãšèšã£ãŠïŒåçŽã«éåžžã®æèã®åããåŠå®ãããïŒåŸæ»ãããããã«ããããªããšããããšã«ãããæ¬ç 究ã§éèŠãªç¥èŠã¯ïŒäºäŸç 究ã«ãã£ãŠïŒåãªãå€ä»£çãªãçºããæèã«æ»ãããšããïŒãããç²åŸããããã»ã¹ãéèŠã§ãã£ãããšãèŠåºããç¹ã«ããããªã«ããïŒãã®ããã»ã¹ã«ã¯å
±æããŠãããä»è
ãå¿
èŠã ã£ãã®ã§ãããããã«ïŒå¿çèšåºåŠçãªèŠ³ç¹ãããçºããæèãæ€èšãããã£ãšãéèŠãªæ矩ãããšèãããããåŠç¿é¢å€§åŠGakushuin Universit
- âŠ