28 research outputs found

    Development of a new HPLC method for in vitro and in vivo studies of haloperidol in solid lipid nanoparticles

    Get PDF
    A simple and sensitive HPLC method was developed and validated for the quantification of haloperidol in solid lipid nanoparticles (SLNs). The developed method was used for detection of shelf life of haloperidol in SLNs. Calibration curve of haloperidol was also constructed in rat plasma using loratidine as internal standard. In vivo studies were performed on rats and concentration of haloperidol in brain and blood was measured for the determination of various pharmacokinetic and hence brain targeting parameters. Chromatogram separation was achieved using C18 column as stationary phase. The mobile phase consisted of 100 mM/L potassium dihydrogen phosphate-acetonitrile-TEA (10:90:0.1, v/v/v) and the pH was adjusted with o-phosphoric acid to 3.5. Flow rate of mobile phase was 2 mL/minute and eluents were monitored at 230 nm using UV/VIS detector. The method was validated for linearity, precision, accuracy, reproducibility, limit of detection (LOD) and limit of quantification (LOQ). Linearity for haloperidol was in the range of 1-16 µg/mL. The value of LOD and LOQ was found to be 0.045 and 0.135 μg/mL respectively. The shelf life of SLNs formulation was found to be 2.31 years at 4 oC. Various parameters like drug targeting index (DTI), drug targeting efficiency (DTE) and nose-to-brain direct transport (DTP) were determined for HP-SLNs & HP-Sol administered intranasally to evaluate the extent of nose-to-brain delivery. The value of DTI, DTE and DTP for HP-SLNs was found to be 23.62, 2362.43 % and 95.77% while for HP-Sol, values were 11.28, 1128.61 % and 91.14 % respectively

    Functional and structural deficiencies of Gemin5 variants associated with neurological disorders

    Get PDF
    Dysfunction of RNA-binding proteins is often linked to a wide range of human disease, particularly with neurological conditions. Gemin5 is a member of the survival of the motor neurons (SMN) complex, a ribosome-binding protein and a translation reprogramming factor. Recently, pathogenic mutations in Gemin5 have been reported, but the functional consequences of these variants remain elusive. Here, we report functional and structural deficiencies associated with compound heterozygosity variants within the Gemin5 gene found in patients with neurodevelopmental disorders. These clinical variants are located in key domains of Gemin5, the tetratricopeptide repeat (TPR)-like dimerization module and the noncanonical RNA-binding site 1 (RBS1). We show that the TPR-like variants disrupt protein dimerization, whereas the RBS1 variant confers protein instability. All mutants are defective in the interaction with protein networks involved in translation and RNA-driven pathways. Importantly, the TPR-like variants fail to associate with native ribosomes, hampering its involvement in translation control and establishing a functional difference with the wild-type protein. Our study provides insights into the molecular basis of disease associated with malfunction of the Gemin5 protei

    Formulacija i evaluacija monolitnih matriksnih polimernih filmova za transdermalnu isporuku nitrendipina

    Get PDF
    The objective of the present work was to develop a suitable transdermal drug delivery system for nitrendipine. Polymeric films of nitrendipine were prepared by the film casting technique (glass ring) on mercury substrate. They were evaluated for physicochemical parameters, in vitro release and ex vivo permeation (heat separated human epidermis). Release of the drug from the films followed anomalous transport (0.5 < n < 1). Polymeric combination containing Eudragit RL 100:PVP K 30 in 4:6 ratio showed the best results. Maximum drug release and skin permeability coefficient in 48 h were 85.8 % and 0.0142 cm h-1, respectively, in formulation C3 (Eudragit RL 100: Plasdone S 630; 4:6) and 88.0 % and 0.0155 cm h-1, respectively, in formulation D3 (Eudragit RL 100: PVP K 30; 4:6). FTIR and TLC studies indicated no drug and polymer interaction.Cilj rada bio je razvoj transdermalnog sustava nitrendipina. Polimerni filmovi nitrendipina pripravljeni su metodom lijevanja (stakleni prsten) na podlozi od žive. Ispitivani su fizičkokemijski parametri, in vitro oslobađanje i ex vivo permeacija (toplinom odvojena humana epiderma). Oslobađanje lijeka iz filmova slijedilo je anomalni transport (0,5 < n < 1). Najbolji rezultati postignuti su kombinacijom polimera Eudragit RL 100 i PVP K 30 u omjeru 4:6. Maksimalno oslobađanje ljekovite tvari i najbolji koeficijent permeacije kroz kožu tijekom 48 h bio je 85,8 %, odnosno 0,0142 cm h1 za formulaciju C3 (Eudragit RL 100 : Plasdone S 630; 4:6) i 88,0 %, odnosno 0,0155 cm h1 za formulaciju D3 (Eudragit RL 100 : PVP K 30; 4:6). FTIR i TLC ukazuju na to da nema interakcije između ljekovite tvari i polimera

    Circadian Disruption, \u3cem\u3ePer3\u3c/em\u3e, and Human Cytokine Secretion

    Get PDF
    Circadian disruption has been linked with inflammation, an established cancer risk factor. Per3 clock gene polymorphisms have also been associated with circadian disruption and with increased cancer risk. Patients completed a questionnaire and provided a blood sample prior to undergoing a colonoscopy (n=70). Adjusted mean serum cytokine concentrations (IL-6, TNF-alpha, gamma-INF, IL-I ra, IL-I-beta, VEGF) were compared among patients with high and low scores for fatigue (Multidimensional Fatigue Inventory), depressive symptoms (Beck Depression Inventory II), or sleep disruption (Pittsburgh Sleep Quality Index), or among patients with different Per3 clock gene variants. Poor sleep was associated with elevated VEGF, and fatigue-related reduced activity was associated with elevated TNF-alpha concentrations. Participants with the 4/5 or 5/5 Per3 variable tandem repeat sequence had elevated IL-6 concentrations compared to those with the 4/4 genotype. Biological processes linking circadian disruption with cancer remain to be elucidated. Increased inflammatory cytokine secretion may play a role

    Polyglutamine-Expanded Androgen Receptor Alteration of Skeletal Muscle Homeostasis and Myonuclear Aggregation Are Affected by Sex, Age and Muscle Metabolism

    Get PDF
    Polyglutamine (polyQ) expansions in the androgen receptor (AR) gene cause spinal and bulbar muscular atrophy (SBMA), a neuromuscular disease characterized by lower motor neuron (MN) loss and skeletal muscle atrophy, with an unknown mechanism. We generated new mouse models of SBMA for constitutive and inducible expression of mutant AR and performed biochemical, histological and functional analyses of phenotype. We show that polyQ-expanded AR causes motor dysfunction, premature death, IIb-to-IIa/IIx fiber-type change, glycolytic-to-oxidative fiber-type switching, upregulation of atrogenes and autophagy genes and mitochondrial dysfunction in skeletal muscle, together with signs of muscle denervation at late stage of disease. PolyQ expansions in the AR resulted in nuclear enrichment. Within the nucleus, mutant AR formed 2% sodium dodecyl sulfate (SDS)-resistant aggregates and inclusion bodies in myofibers, but not spinal cord and brainstem, in a process exacerbated by age and sex. Finally, we found that two-week induction of expression of polyQ-expanded AR in adult mice was sufficient to cause premature death, body weight loss and muscle atrophy, but not aggregation, metabolic alterations, motor coordination and fiber-type switch, indicating that expression of the disease protein in the adulthood is sufficient to recapitulate several, but not all SBMA manifestations in mice. These results imply that chronic expression of polyQ-expanded AR, i.e. during development and prepuberty, is key to induce the full SBMA muscle pathology observed in patients. Our data support a model whereby chronic expression of polyQ-expanded AR triggers muscle atrophy through toxic (neomorphic) gain of function mechanisms distinct from normal (hypermorphic) gain of function mechanisms

    Accelerated surgery versus standard care in hip fracture (HIP ATTACK): an international, randomised, controlled trial

    Get PDF

    Solid lipid nanoparticles for nose to brain delivery of haloperidol: in vitro drug release and pharmacokinetics evaluation

    Get PDF
    In the present study, haloperidol (HP)-loaded solid lipid nanoparticles (SLNs) were prepared to enhance the uptake of HP to brain via intranasal (i.n.) delivery. SLNs were prepared by a modified emulsification–diffusion technique and evaluated for particle size, zeta potential, drug entrapment efficiency, in vitro drug release, and stability. All parameters were found to be in an acceptable range. In vitro drug release was found to be 94.16±4.78% after 24 h and was fitted to the Higuchi model with a very high correlation coefficient (R2=0.9941). Pharmacokinetics studies were performed on albino Wistar rats and the concentration of HP in brain and blood was measured by high performance liquid chromatography. The brain/blood ratio at 0.5 h for HP-SLNs i.n., HP sol. i.n. and HP sol. i.v. was 1.61, 0.17 and 0.031, respectively, indicating direct nose-to-brain transport, bypassing the blood–brain barrier. The maximum concentration (Cmax) in brain achieved from i.n. administration of HP-SLNs (329.17±20.89 ng/mL, Tmax 2 h) was significantly higher than that achieved after i.v. (76.95±7.62 ng/mL, Tmax 1 h), and i.n. (90.13±6.28 ng/mL, Tmax 2 h) administration of HP sol. The highest drug-targeting efficiency (2362.43%) and direct transport percentage (95.77%) was found with HP-SLNs as compared to the other formulations. Higher DTE (%) and DTP (%) suggest that HP-SLNs have better brain targeting efficiency as compared to other formulations
    corecore