69 research outputs found

    Possible involvement of iron-induced oxidative insults in neurodegeneration.

    Get PDF
    Involvement of iron in the development of neurodegenerative disorders has long been suggested, and iron that cannot be stored properly is suggested to induce iron toxicity. To enhance iron uptake and suppress iron storage in neurons, we generated transgenic (Tg) mice expressing iron regulatory protein 2 (IRP2), a major regulator of iron metabolism, in a neuron-specific manner. Although very subtle, IRP2 was expressed in all regions of brain examined. In the Tg mice, mitochondrial oxidative insults were observed including generation of 4-hydroxynonenal modified proteins, which appeared to be removed by a mitochondrial quality control protein Parkin. Inter-crossing of the Tg mice to Parkin knockout mice perturbed the integrity of neurons in the substantia nigra and provoked motor symptoms. These results suggest that a subtle, but chronic increase in IRP2 induces mitochondrial oxidative insults and accelerates neurodegeneration in a mouse model of Parkinson's disease. Thus, the IRP2 Tg may be a useful tool to probe the roles of iron-induced mitochondrial damages in neurodegeraration research

    Aortic Dissection in a Patient with Human Immunodeficiency Virus Infection That was Diagnosed at Autopsy : A Case Report.

    Get PDF
    A 43-year-old homosexual man was referred to our hospital for chest pain and loss of consciousness. He was hypertensive, and had an uncontrolled viral load. Serum creatinine revealed acute renal failure, and he died 3 days later. On autopsy, aortic dissection (TypeB) was found. No obvious inflammatory change, granulation, bacterial or fungal infection, or medionecrosis were seen at the dissection site. To our knowledge, this was the first case with HIV in whom aortic dissection was diagnosed at autopsy. Aortic dissection is a potential differential diagnosis even in young patients presenting with hypertension and chest pain

    COVID-19 symptoms at hospital admission vary with age and sex: results from the ISARIC prospective multinational observational study

    Get PDF
    Background: The ISARIC prospective multinational observational study is the largest cohort of hospitalized patients with COVID-19. We present relationships of age, sex, and nationality to presenting symptoms. Methods: International, prospective observational study of 60 109 hospitalized symptomatic patients with laboratory-confirmed COVID-19 recruited from 43 countries between 30 January and 3 August 2020. Logistic regression was performed to evaluate relationships of age and sex to published COVID-19 case definitions and the most commonly reported symptoms. Results: ‘Typical’ symptoms of fever (69%), cough (68%) and shortness of breath (66%) were the most commonly reported. 92% of patients experienced at least one of these. Prevalence of typical symptoms was greatest in 30- to 60-year-olds (respectively 80, 79, 69%; at least one 95%). They were reported less frequently in children (≀ 18 years: 69, 48, 23; 85%), older adults (≄ 70 years: 61, 62, 65; 90%), and women (66, 66, 64; 90%; vs. men 71, 70, 67; 93%, each P < 0.001). The most common atypical presentations under 60 years of age were nausea and vomiting and abdominal pain, and over 60 years was confusion. Regression models showed significant differences in symptoms with sex, age and country. Interpretation: This international collaboration has allowed us to report reliable symptom data from the largest cohort of patients admitted to hospital with COVID-19. Adults over 60 and children admitted to hospital with COVID-19 are less likely to present with typical symptoms. Nausea and vomiting are common atypical presentations under 30 years. Confusion is a frequent atypical presentation of COVID-19 in adults over 60 years. Women are less likely to experience typical symptoms than men

    Indexicality of knowledge-how

    No full text

    Indexicality of knowledge-how

    No full text

    Product-Induced Gene Expression, a Product-Responsive Reporter Assay Used To Screen Metagenomic Libraries for Enzyme-Encoding Genes ▿ †

    No full text
    A reporter assay-based screening method for enzymes, which we named product-induced gene expression (PIGEX), was developed and used to screen a metagenomic library for amidases. A benzoate-responsive transcriptional activator, BenR, was placed upstream of the gene encoding green fluorescent protein and used as a sensor. Escherichia coli sensor cells carrying the benR-gfp gene cassette fluoresced in response to benzoate concentrations as low as 10 ÎŒM but were completely unresponsive to the substrate benzamide. An E. coli metagenomic library consisting of 96,000 clones was grown in 96-well format in LB medium containing benzamide. The library cells were then cocultivated with sensor cells. Eleven amidase genes were recovered from 143 fluorescent wells; eight of these genes were homologous to known bacterial amidase genes while three were novel genes. In addition to their activity toward benzamide, the enzymes were active toward various substrates, including d- and l-amino acid amides, and displayed enantioselectivity. Thus, we demonstrated that PIGEX is an effective approach for screening novel enzymes based on product detection

    Metagenomic Screening for Aromatic Compound-Responsive Transcriptional Regulators

    Get PDF
    <div><p>We applied a metagenomics approach to screen for transcriptional regulators that sense aromatic compounds. The library was constructed by cloning environmental DNA fragments into a promoter-less vector containing green fluorescence protein. Fluorescence-based screening was then performed in the presence of various aromatic compounds. A total of 12 clones were isolated that fluoresced in response to salicylate, 3-methyl catechol, 4-chlorocatechol and chlorohydroquinone. Sequence analysis revealed at least 1 putative transcriptional regulator, excluding 1 clone (CHLO8F). Deletion analysis identified compound-specific transcriptional regulators; namely, 8 LysR-types, 2 two-component-types and 1 AraC-type. Of these, 9 representative clones were selected and their reaction specificities to 18 aromatic compounds were investigated. Overall, our transcriptional regulators were functionally diverse in terms of both specificity and induction rates. LysR- and AraC- type regulators had relatively narrow specificities with high induction rates (5-50 fold), whereas two-component-types had wide specificities with low induction rates (3 fold). Numerous transcriptional regulators have been deposited in sequence databases, but their functions remain largely unknown. Thus, our results add valuable information regarding the sequence–function relationship of transcriptional regulators.</p> </div

    Operonic structures of aromatic compound-responsive clones.

    No full text
    <p>Arrows indicate GFP (grey), and putative transcriptional regulators are in black (LysR-type), red (Fis-type), blue (two-component system response regulator), green (two-component system, histidine kinase) and yellow (AraC-type). Restriction sites are those used for construction of deletion derivatives.</p
    • 

    corecore