12 research outputs found

    Effects of heroin self-administration and forced withdrawal on the expression of genes related to the mTOR network in the basolateral complex of the amygdala of male Lewis rats

    Get PDF
    Rationale The development of substance use disorders involves long-lasting adaptations in specific brain areas that result in an elevated risk of relapse. Some of these adaptations are regulated by the mTOR network, a signalling system that integrates extracellular and intracellular stimuli and modulates several processes related to plasticity. While the role of the mTOR network in cocaine- and alcohol-related disorders is well established, little is known about its participation in opiate use disorders. Objectives To use a heroin self-administration and a withdrawal protocol that induce incubation of heroin-seeking in male rats and study the associated effects on the expression of several genes related to the mTOR system and, in the specific case of Rictor, its respective translated protein and phosphorylation. Results We found that heroin self-administration elicited an increase in the expression of the genes Igf1r, Igf2r, Akt2 and Gsk3a in the basolateral complex of the amygdala, which was not as evident at 30 days of withdrawal. We also found an increase in the expression of Rictor (a protein of the mTOR complex 2) after heroin self-administration compared to the saline group, which was occluded at the 30-day withdrawal period. The activation levels of Rictor, measured by the phosphorylation rate, were also reduced after heroin self-administration, an effect that seemed more apparent in the protracted withdrawal group. Conclusions These results suggest that heroin self-administration under extended access conditions modifies the expression profile of activators and components of the mTOR complexes and show a putative irresponsive mTOR complex 2 after withdrawal from heroin use

    Interaction between maternal immune activation and peripubertal stress in rats: impact on cocaine addiction-like behaviour, morphofunctional brain parameters and striatal transcriptome.

    Get PDF
    Substance use disorders are more prevalent in schizophrenia, but the causal links between both conditions remain unclear. Maternal immune activation (MIA) is associated with schizophrenia which may be triggered by stressful experiences during adolescence. Therefore, we used a double-hit rat model, combining MIA and peripubertal stress (PUS), to study cocaine addiction and the underlying neurobehavioural alterations. We injected lipopolysaccharide or saline on gestational days 15 and 16 to Sprague-Dawley dams. Their male offspring underwent five episodes of unpredictable stress every other day from postnatal day 28 to 38. When animals reached adulthood, we studied cocaine addiction-like behaviour, impulsivity, Pavlovian and instrumental conditioning, and several aspects of brain structure and function by MRI, PET and RNAseq. MIA facilitated the acquisition of cocaine self-administration and increased the motivation for the drug; however, PUS reduced cocaine intake, an effect that was reversed in MIA + PUS rats. We found concomitant brain alterations: MIA + PUS altered the structure and function of the dorsal striatum, increasing its volume and interfering with glutamatergic dynamics (PUS decreased the levels of NAA + NAAG but only in LPS animals) and modulated specific genes that could account for the restoration of cocaine intake such as the pentraxin family. On its own, PUS reduced hippocampal volume and hyperactivated the dorsal subiculum, also having a profound effect on the dorsal striatal transcriptome. However, these effects were obliterated when PUS occurred in animals with MIA experience. Our results describe an unprecedented interplay between MIA and stress on neurodevelopment and the susceptibility to cocaine addiction.This work has been funded by the Spanish Ministry of Economy and Competitiveness (Project no.: PSI2016-80541-P to EA and AH-M); Ministry of Science (PID2019- 104523RB-I00 to A-HM and PID2019-111594RB-100 to EA), Spanish Ministry of Health, Social Services and Equality (Network of Addictive Disorders - Project no.: RTA-RD16/ 020/0022 of the Institute of Health Carlos III and National Plan on Drugs, Project no.: 2016I073 to EA and 2017I042 to A H-M); The BBVA Foundation (Leonardo Grants) to AH-M; The European Union (Project no.: JUST- 2017- AG- DRUG-806996-JUSTSO) to EA; and the UNED (Plan for the Promotion of Research) to EA and AH-M. MLS-M was supported by the Ministerio de Ciencia e Innovación, Instituto de Salud Carlos III (project PI17/01766), co-financed by the European Regional Development Fund (ERDF), ‘A way to make Europe’; project PID2021-128862OB-I00 funded by MCIN/AEI/ 10.13039/501100011033/FEDER, UE, CIBER de Salud Mental - Instituto de Salud Carlos III (project number CB07/09/0031); Delegación del Gobierno para el Plan Nacional sobre Drogas (project number 2017/085, 2022/008917); and Fundación Alicia Koplowitz. Fundación Tatiana Pérez de Guzmán el Bueno supported MC-V. MD’s work was supported by Ministerio de Ciencia e Innovación (MCIN) and Instituto de Salud Carlos III (PT20/00044). The CNIC is supported by the Instituto de Salud Carlos III (ISCIII), the Ministerio de Ciencia e Innovación (MCIN) and the Pro CNIC Foundation and is a Severo Ochoa Center of Excellence (SEV-2015-0505).S

    Impulsive Action and Impulsive Choice Are Differentially Associated With Gene Expression Variations of the GABAA Receptor Alfa 1 Subunit and the CB1 Receptor in the Lateral and Medial Orbitofrontal Cortices

    Get PDF
    The orbitofrontal cortex (OFC) is a key brain region for decision-making, action control and impulsivity. Quite notably, previous research has identified a double dissociation regarding the role of this cortical territory in impulsive choice. While medial orbitofrontal lesions increase preference for a large but delayed reward, lateral orbitofrontal lesions have the opposite effect. However, there are no data regarding this anatomical dissociation in impulsive action. The neurochemical basis of impulsivity is still being elucidated, however, in recent years a role for the endocannabinoids and the related glutamatergic and GABAergic neurotransmitter systems has been suggested. Here, we submitted male Wistar rats to a delay-discounting task (DDT) or a two-choice serial reaction time task (2-CSRTT) and classified them as high impulsive or low impulsive in either task using cluster analysis. We then examined the gene expression of several elements of the endocannabinoid system or different subunits of certain glutamatergic or GABAergic ionotropic receptors (AMPA, NMDA, or GABAA) in the lateral or medial divisions of their orbitofrontal cortices. Our results confirm, at the gene expression level, the dissociation in the participation of the medial, and lateral divisions of the orbitofrontal cortex in impulsivity. While in the 2-CSRTT (inhibitory control) we found that high impulsive animals exhibited lower gene expression levels of the α1 GABAA receptor subunit in the lateral OFC, no such differences were evident in the medial OFC. When we analyzed DDT performance, we found that high impulsive animals displayed lower levels of CB1 gene expression in the medial but not in the lateral OFC. We propose that GABAergic dynamics in the lateral OFC might contribute to the inhibitory control mechanisms that are altered in impulsive behavior while endocannabinoid receptor gene transcription in the medial OFC may subserve the delay-discounting processes that participate in certain types of impulsiveness

    Morphine self-administration alters the expression of translational machinery genes in the amygdala of male Lewis rats

    Get PDF
    Background: Addiction is a chronic disorder with a high risk of relapse. The neural mechanisms mediating addictions require protein synthesis, which could be relevant for the development of more effective treatments. The mTOR signaling pathway regulates protein synthesis processes that have recently been linked to the development of drug addiction. Aims: To assess the effects of morphine self-administration and its subsequent extinction on the expression of several genes that act in this pathway, and on the levels of specific phosphoproteins (Akt, Gsk3α/β, mTOR, PDK1 and p70 S6 kinase) in the amygdala, nucleus accumbens, and the prefrontal cortex. Methods: Male Lewis rats underwent morphine self-administration (1 mg/kg) for 19 days. They subsequently were submitted to extinction training for 15 days. Rats were killed either after self-administration or extinction, their brains extracted, and gene expression or phosphoprotein levels were assessed. Results: We found an increase in Raptor and Eif4ebp2 expression in the amygdala of rats that self-administered morphine, even after extinction. The expression of Insr in the amygdala of control animals decreased over time while the opposite effect was seen in the rats that self-administered morphine

    Unaltered cocaine self-administration in the prenatal LPS rat model of schizophrenia

    No full text
    Although cocaine abuse is up to three times more frequent among schizophrenic patients, it remains unclear why this should be the case and whether sex influences this relationship. Using a maternal immune activation model of schizophrenia, we tested whether animals at higher risk of developing a schizophrenia-like state are more prone to acquire cocaine self-administration behavior, and whether they show enhanced sensitivity to the reinforcing actions of cocaine or if they are resistant to extinction. Pregnant rats were injected with lipopolysaccharide on gestational day 15 and 16, and the offspring (both male and female) were tested in working memory (T-maze), social interaction and sensorimotor gating (prepulse inhibition of the acoustic startle response) paradigms. After performing these tests, the rats were subjected to cocaine self-administration regimes (0.5 mg/kg), assessing their dose-response and extinction. Male rats born to dams administered lipopolysaccharide showed impaired working memory but no alterations to their social interactions, and both male and female rats showed prepulse inhibition deficits. Moreover, similar patterns of cocaine self-administration acquisition, responsiveness to dose shifts and extinction curves were observed in both control and experimental rats. These results suggest that the higher prevalence of cocaine abuse among schizophrenic individuals is not due to a biological vulnerability directly associated to the disease and that other factors (social, educational, economic, familial, etc.) should be considered given the multifactorial nature of this illness. (C) 2016 Elsevier Inc. All rights reserved

    Pharmacological characterization of novel synthetic opioids: Isotonitazene, metonitazene, and piperidylthiambutene as potent μ-opioid receptor agonists

    No full text
    Recent trends of opioid abuse and related fatalities have highlighted the critical role of Novel Synthetic Opioids (NSOs). We studied the μ-opioid-like properties of isotonitazene (ITZ), metonitazene (MTZ), and piperidylthiambutene (PTB) using different approaches. In vitro studies showed that ITZ and MTZ displayed a higher potency in both rat membrane homogenates (EC50:0.99 and 19.1 nM, respectively) and CHO-MOR (EC50:0.71 and 10.0 nM, respectively) than [D-Ala2, NMe-Phe4, Gly-ol5]-enkephalin (DAMGO), with no difference in maximal efficacy (Emax) between DAMGO and NSOs. ITZ also has higher affinity (Ki:0.06 and 0.05 nM) at the MOR than DAMGO in both systems, whilst MTZ has higher affinity in CHO-MOR (Ki=0.23 nM) and similar affinity in rat cerebral cortex (Ki = 0.22 nM). PTB showed lower affinity and potency than DAMGO. In vivo, ITZ displayed higher analgesic potency than fentanyl and morphine (ED50:0.00156, 0.00578, 2.35 mg/kg iv, respectively); ITZ (0.01 mg/kg iv) and MTZ (0.03 mg/kg iv) reduced behavioral activity and increased dialysate dopamine (DA) in the NAc shell (max. about 200% and 170% over basal value, respectively. Notably, ITZ elicited an increase in DA comparable to that of higher dose of morphine (1 mg/kg iv), but higher than the same dose of fentanyl (0.01 mg/kg iv). In silico, induced fit docking (IFD) and metadynamic simulations (MTD) showed that binding modes and structural changes at the receptor, ligand stability, and the overall energy score of NSOs were consistent with the results of the biological assays
    corecore