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Abstract 

Background: Addiction is a chronic disorder with a high risk of relapse. The neural mechanisms 

mediating addictions require protein synthesis, which could be relevant for the development 

of more effective treatments. The mTOR signaling pathway regulates protein synthesis 

processes that have recently been linked to the development of drug addiction.  

Aims: To assess the effects of morphine self-administration and its subsequent extinction on 

the expression of several genes that act in this pathway, and on the levels of specific 

phosphoproteins (Akt, Gsk3α/β, mTOR, PDK1 and p70 S6 kinase) in the amygdala, nucleus 

accumbens and the prefrontal cortex.  

Methods: Male Lewis rats underwent morphine self-administration (1mg/kg) for 19 days. They 

subsequently were submitted to extinction training for 15 days. Rats were killed either after 

self-administration or extinction, their brains extracted and gene expression or 

phosphoprotein levels were assessed.  

Results: We found an increase in Raptor and Eif4ebp2 expression in the amygdala of rats that 

self-administered morphine, even after extinction. The expression of Insr in the amygdala of 

control animals decreased over time while the opposite effect was seen in the rats that self-

administered morphine.  

Conclusions: Our results suggest that morphine self-administration affects the gene expression 

of some elements of the translational machinery in the amygdala.  

 

Keywords: Morphine self-administration, Lewis rats, mTOR pathway, extinction, protein 

synthesis 

 

 

 



1 - Introduction 

Addiction is a chronic debilitating condition with a high rate of relapse, for which there 

is no effective treatment (Kalivas and O’Brien, 2008; McLellan et al., 2000). The mechanisms 

underlying the shift from controlled recreational use of drugs to pathological compulsive 

behavior are not yet fully understood, nor are the long-lasting neuroadaptive changes behind 

the elevated risk of relapse. 

The development of an addiction depends on synaptic plasticity, which in turn relies on 

protein synthesis (Kalivas and O’Brien, 2008; Kauer and Malenka, 2007; Lüscher and Malenka, 

2011). Thus, a signaling pathway that has generated much interest of late is that involving the 

mechanistic target of rapamycin, mTOR, a serine/threonine kinase that plays an important role 

in different aspects of cell growth, proliferation and survival (Kwon et al., 2003; Pearce et al., 

2010; Zhou et al., 2009). This protein nucleates two different multi-protein complexes known 

as mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2). These complexes are part of a 

pathway which integrates many intracellular and extracellular signals, and regulates processes 

such as protein, lipid and nucleotide synthesis (Düvel et al., 2010; Ma and Blenis, 2004; 

Porstmann et al., 2008; Stoica et al., 2011), autophagy (Blommaart et al., 1995), mitochondrial 

metabolism (Cunningham et al., 2007; Schieke et al., 2006) and cytoskeletal organization 

(Sarbassov et al., 2004). Given its role in protein synthesis-dependent synaptic plasticity 

(Casadio et al., 1999; Costa-Mattioli et al., 2009; Liu-Yesucevitz et al., 2011; Stoica et al., 2011), 

this pathway is thought to participate in the neurobiology of addictions. Accordingly, several 



studies have focused on the effects of rapamycin, an inhibitor of mTOR activity, on addictive 

behavior. 

These studies suggest that this signaling pathway is involved in the long-lasting 

neuroadaptations that occur as addictive disorders progress (Dayas et al., 2012; Neasta et al., 

2014). For example, rapamycin was able to reduce a place preference for cocaine (Bailey et al., 

2012; Wu et al., 2011) and amphetamine (Narita et al., 2005) when measured in a conditioned 

place preference (CPP) test (Wang et al., 2010). Systemic rapamycin injections also reduced 

motivation for self-administered cocaine in rats as measured in a progressive ratio schedule of 

reinforcement (James et al., 2016). In addition, there was a reduction in cue induced 

reinstatement of cocaine seeking mediated by mTOR effectors when rapamycin was injected 

directly in the core of the nucleus accumbens (NAcc) (Wang et al., 2010). Conversely, Mtor 

gene expression was down-regulated in the ventral striatum of relapse-prone rats (Brown et 

al., 2011). These results might seem conflictive, but the effects of rapamicyn found in the study 

of Wang were found only in the NAcc core, but not in the shell, while in Brown’s study the 

whole ventral striatum was assessed. Also, it should be noted that gene expression is not 

necessarily related to protein activity, making the results of both studies difficult to compare. 

Rapamycin also blocked nicotine-induced behavioral sensitization and activation of 

effectors of mTORC1 (Gao et al., 2014). It has also been suggested that the dopamine receptor 

1/mTOR complex 1-dependent plasticity is recruited following a first alcohol exposure and that 

it may be a critical cellular component of reinforcement learning (Beckley et al., 2016). In 



terms of opiates, chronic morphine decreases the soma size of dopaminergic cells in the 

ventral tegmental area (VTA), and neurotransmitter release by these cells, while increasing 

their excitability, events that are dependent on mTORC2 activity (Mazei-Robison et al., 2011). 

Activation of the mTOR pathway in the CA3 hippocampal region is necessary for the 

acquisition of morphine CPP in rats (Cui et al., 2010). Moreover, systemic inhibition of mTOR 

with rapamycin after re-exposure to a morphine paired compartment inhibits CPP in a dose 

dependent fashion, an effect that was replicated with cocaine and alcohol (Lin et al., 2014). 

Hence, mTOR may play a role in the reconsolidation of drug-paired memories. Elsewhere, a 

single dose of rapamycin was able to reduce the craving elicited by drug related cues in human 

heroin addicts (Shi et al., 2009). 

To date, we are unaware of any study that has used a self-administration protocol to 

study the effects of opioids on the mTOR signaling pathway in rodents, so the objective of this 

study is to address this issue. Here, we assessed the effects of morphine self-administration, 

followed by extinction training, on the mTOR pathway in male Lewis rats. For this purpose, we 

chose three brain areas known for their involvement in opioid reinforcement and extinction 

learning: the amygdala, the NAcc, and the prefrontal cortex (PFC). The expression of several 

mediators of the mTOR pathway was analyzed using RT-qPCR.  We chose three genes coding 

membrane receptors related to the pathway (Igf1r, Igf2r and Insr), seven genes coding 

upstream intracellular second messengers (Akt1, Akt2, Gsk3a, Gsk3b, Pdk1 and Pi3ca), three 

components of the mTOR complexes (Mtor, Rptor and Rictor) and seven downstream 



mediators and effectors of the pathway (Eef1a1, Eif4e, Rps6kb1, Rps6, Sgk1 and Eif4ebp2). 

Reviewing the functions and connections of all these genes is beyond of the scope of this 

paper; we recommend the excellent review of Laplante and Sabatini (2009) for further details. 

We have also assessed the levels of specific proteins encoded by these genes in western blots 

with phosphospecific antibodies directed to phosphorylation sites required for their activation 

by kinases of the pathway. The phosphoproteins assessed were Akt (Ser437), Gsk3α/β 

(Ser21/9), mTOR (Ser2448), PDK1 (Ser241) and p70 S6 Kinase (Thr389). 

2 - Methods 

2.1 - Animals 

 Adult male Lewis rats (Charles River Laboratories) were housed in groups of 4 in plastic 

cages with wood chips bedding inside of a temperature and humidity controlled facility, and 

on a 12h/12h light/dark cycle (lights on at 8:00am) with ad libitum access to food (standard 

commercial rodent diet A04/A03: Panlab) and water. Animals were allowed at least one week 

to acclimatize to the animal facility and they weighed around 250-300 g when the 

experimental procedures commenced. All the animals were maintained and handled according 

to European Union guidelines for the care of laboratory animals (EU Directive 2010/63/EU 

governing animal experimentation) and the Ethical Committee of UNED approved all the 

experimental procedures. 

2.2 – Experimental groups 



 Animals were randomly assigned to the following groups: Morphine Self-administration 

(MSA), Vehicle Self-administration (VhSA), Morphine Extinction (MEx) and Vehicle Extinction 

(VhEx). Due to the limited number of operant boxes, several iterations of the self-

administration experiments with animals from each of the four groups were performed until a 

minimum of 8 subjects per group was obtained. Four animals were excluded from the 

experiment due to loss of the skull mount or catheter patency issues.  

2.3 - Apparatus 

 Twelve operant conditioning chambers (l=300mm; w=245mm; h=328mm) (Coulborne 

Instruments), each equipped with a pellet dispenser and a microliter injection pump, were 

used for the morphine self-administration and extinction studies. A catheter was connected to 

the rat and held in place with a spring-tether system, and a rotating swivel, which allowed the 

animals to move freely inside the chamber. Two levers placed 14cm apart were available 

throughout all the sessions, one of them inactive.  Due to a technical issue with the MedState 

program, the responses of the inactive lever were not recorded. 

2.4 - Experimental protocol (Fig. 1) 

2.4.1 – Lever press instrumental training 

 At the beginning of the experiment, all the rats received daily instrumental training 

sessions with food pellets as reinforcers (grain-based rodent tablet, Testdiet™) on a fixed ratio 

1 schedule, facilitating the acquisition of self-administration behavior. During this training, the 

rats had restricted access to food (14 grams/day). The sessions lasted 30 minutes and 



continued until the animals developed a robust lever press behavior (at least 100 lever presses 

in three consecutive training sessions). 

2.4.2 - Surgery 

 Rats were anesthetized with an isoflurane/oxygen mixture (5% isoflurane during 

induction; 2% ±0.5% for maintenance), and a polyvinylchloride catheter (0,16mm i.d.) was 

inserted into the right jugular vein of the animal approximately at the level of the atrium and 

secured there with silk thread knots. The catheter was fixed subcutaneously around the neck, 

exiting the skin at the midscapular region. A pedestal of dental cement was then mounted on 

the skull of the rat in order to attach the tethering system. After surgery, the rats were allowed 

to recover for 7 days and a nonsteroidal anti-inflammatory drug (NSAID) (meloxicam - 

Metacam™: 15 drops of a 1.5 g/ml solution per 500 ml of water) was added to the drinking 

water. Until the end of the self-administration procedure, the catheters were flushed daily 

with a sterile saline solution containing sodium heparin (100 IU/ml) and gentamicin (1mg/ml) 

to maintain catheter patency and to prevent infections. 

2.4.3 - Morphine self-administration 

 A week after recovery from surgery, the rats underwent 19 daily sessions of morphine 

self-administration. During the dark phase of the light cycle, for 12 hours (starting at 8 pm) rats 

were allowed daily access to morphine (1 mg/kg in a sterile saline -0.9% NaCl- solution) or its 

vehicle alone under a fixed-ratio 1 reinforced schedule. During these sessions, one active lever 

press resulted in morphine infusion (1 mg/kg morphine in saline solution delivered over 10 



seconds) followed by a 10 second time-out. A light cue located above the active lever indicated 

the availability of the drug, only being turned off during drug delivery, time out and at the end 

of each session. A limit of 50 infusions per session was set in order to avoid overdosing. One 

day after the last session, two groups of rats were sacrificed (VhSA, n=10; MSA, n=10), and 

their brains were processed and stored. 

2.4.4 - Extinction training 

 The remaining rats were given 15 daily sessions of extinction training using the same 

self-administration protocol, although in this phase all the rats received saline injections 

instead of morphine. One day after the last extinction session, the two remaining groups of 

rats (VhEx, n=8; MEx, n=8) were sacrificed, and their brains processed and stored. 

2.5 - Sample processing 

 On the day of the sacrifice, the rats were decapitated and with the help of a brain 

matrix, 1 mm thick coronal slices were obtained at approximately 4.2mm anterior from 

bregma for the prefrontal cortex, at approximately 3.10 mm posterior from bregma for the   

amygdala and at approximately 1.70 mm posterior from bregma for the PFC. With the help of 

two dissecting lancet-shaped needles, the amygdala (mainly the basolateral amygdala – BLA, 

although some marginal amounts of the adjacent central amygdala might have been included 

in some cases), the NAcc (both shell and core)  and the prefrontal cortex (mostly the 

orbitofrontal cortex, OFC, although some marginal amounts of the agranular insular cortex 

might have been included in some cases) were dissected according to the Paxinos and Watson 



atlas (Franklin and Paxinos, 2007) (see Fig. 2). All the surfaces and tools used for dissection 

were sterilized and treated with RNAseZap® (Ambion™), and all the steps were carried out 

with caution to maintain RNA integrity. The tissue samples from one hemisphere (randomized) 

were preserved overnight at 4 ºC in RNAlater® (Ambion™) and then stored at -70 ºC in 

RNAlater® for later RT-qPCR analysis. The samples of the other hemisphere were snap frozen 

with dry ice and stored at -70º for western blot analysis. 

2.6 - RT-qPCR analysis 

 The samples stored in RNAlater® were homogenized in QIAzol lysis reagent (QIAgen) 

using a pellet pestle. The total RNA was extracted and precipitated using the chloroform, 

isopropanol and ethanol method (Chomczynski and Sacchi, 1987) with glycogen as a carrier. 

The precipitate was dissolved in RNAse free water, and the concentration and RNA integrity (as 

indexed by the RIN value) was assessed in a bioanalyzer (Agilent 2100). The RNA concentration 

in each sample was adjusted by adding RNAse free water and to avoid genomic DNA 

contamination, DNAse digestion was performed (DNAse I, Amplification Grade, Invitrogen) 

following the manufacturer’s instructions. Finally, the samples were retrotranscribed using a 

commercial kit (Biorad iScript™ cDNA Synthesis Kit).  PCR assays were performed on a real time 

PCR detection system (CFX9600, Biorad) with a SSO Advanced SYBR mix (Biorad) using the 

primers indicated in the supplementary materials section. We ran duplicates of all the 

samples along with a no-template control and a no-RT control. We discarded the data of any 

assay with an unusual amplification or melt curve, if the difference between them was 



between duplicates was higher than one cycle. The relative expression of each gene 

calculated as described in Pfaffl, 2001 using Gapdh as a reference gene and the reaction 

efficiencies were obtained using LinRegPCR software (Ruijter et al., 2009), and normalized 

respect to the group VhSA.  

2.7 - Western blotting 

 The tissue samples were homogenized using a pellet pestle in 10 volumes of lysis 

buffer: 50mM HEPES [pH7.5], 320 mM sucrose, (CompleteTM EDTA-free, Roche) protease 

inhibitors, and phosphatase inhibitors (PHOStopTM, Roche). The resulting homogenate was 

centrifuged at 2000 g and at 4 ºC for 10 minutes, the supernatants were recovered and their 

protein concentration was assessed using the Bradford assay (Bio-Rad Protein Assay). The 

protein extracts (3 g) were mixed with 6X Laemmli buffer and loaded onto 8% SDS-PAGE gels, 

resolved by electrophoresis and transferred to PVDF membranes. After blocking non-specific 

interactions with 5% BSA for one hour, the membranes were probed overnight with the 

primary antibodies (see supplementary materials) that were then recognized with a 

horseradish peroxidase-conjugated secondary antibody (see supplementary materials). 

Antibody binding was visualized by chemiluminescence (ECL Plus Western Blotting Substrate, 

Pierce™). As a control for protein loading, we measured the total protein loaded by adding 

2,2,2-trichloroethanol to the gels prior to polymerization (final concentration 0.5% v/v: Ladner 

et al., 2004), and after resolving the gel, it was excited with an UV transilluminator and the 

fluorescence emitted was measured. We used a CCD based detector (Amersham Imager 600) 



to capture both the chemiluminiscence and the UV/fluorescence images, and the ImageJ 

software to analyze and quantify them. When necessary, antibodies were stripped using a 

harsh stripping protocol (“Stripping for reprobing”: Abcam®). 

2.8 - Statistical analysis 

 The data obtained from the self-administration and extinction experiments were 

analyzed using repeated measures ANOVA. The analysis of the self-administration data had 

Sessions as a within-subject factor, and Treatment (Morphine-M- or Vehicle-Vh-) and Phase 

(Self-administration-SA- or Extinction-Ex-) as between-subject factors. The factor Phase was 

included in order to verify that there were no differences in self-administration behaviour (i.e. 

that the self-administration curves were comparable) between the rats used to analyse self-

administration effects and those used to analyse extinction-related alterations.  In the analysis 

of the extinction behavioral data, we only examined the effects of Treatment (between-subject 

factor) and Sessions (within-subjects factor). The degrees of freedom were adjusted by 

applying the Greenhouse-Geisser correction when the sphericity assumption was violated.  

 To analyze the biochemical assays two-way ANOVAs were performed with two 

between-subject factors: Treatment and Phase. When the required assumptions for ANOVA 

were not met, logarithmic, square root or reciprocal transformations were applied. If the 

assumptions were still violated, a Kruskal-Wallis test was performed followed by a multiple 

comparison of mean rank sums with VhSA as the control condition including a Bonferroni 

correction to the p-values (Conover, 1999).  



Effect sizes were calculated for all the significant results, eta squared for the ANOVAs 

(η²), generalized eta squared for the repeated measures ANOVAs (ηG²) (Bakeman, 2005) and 

chi squared for Kruskal-Wallis analyses. 

2.9 - Software 

 The statistical analyses were performed using SPSS 24 (IBM) and the level of 

significance was set to α=0.05 (uncorrected). The non-parametric multiple comparisons of 

groups were implemented in R, using the kwManyOneConoverTest function of the 

PMCMRPlus package (https://CRAN.R-project.org/package=PMCMRplus) by Thorsten 

Pohlert. All the graphs were designed using the PRISM 6 software (GraphPad Software, Inc). 

3 – Results 

3.1 - Behavioral data 

All the animals achieved a high number of active lever presses during the acquisition 

phase, probably due to the previous autoshaping training (Fig. 1). Subsequently, the rats that 

received saline lowered the rate of active lever pressing, whereas the number of active lever 

presses of the rats that received morphine remained high. During the first extinction session, 

there was a surge in the number of active lever presses in the rats of the MEx group, although 

this decreased gradually in the following sessions until it reached values similar to those of the 

VhEx group. The two way-repeated measures ANOVA showed a significant effect of the 

Sessions factor (F7.34,227.63=3.94, p<0.001, ηG²=0.07). We also found a significant effect of the 

Treatment factor (F1,31=73,42, p<0.001, η2=0.7) suggesting that MSA animals pressed more the 

https://cran.r-project.org/package=PMCMRplus


active lever than VhSA rats over the course of the self-administration sessions. We did not find 

any significant Treatment*Phase interaction (F1,31=0,425, p=0.52, η2=0.004) or any effect of the 

Phase factor (F1,31=0,276, p=0.6, η2=0.002). Therefore, it was concluded that the groups that 

underwent extinction performed similarly to their counterparts during the self-administration 

procedure. Regarding the extinction session data, we found a significant effect of the Sessions 

factor (F5.71,74,28=3,67, p=0.003, ηG²=0.17). We also found a significant effect of the Treatment 

factor (F1,13=12.02, p=0.004, η2=0.48) for the average values throughout the extinction sessions 

(see Fig. 1). To test whether the rats in the MEx group had extinguished the morphine self-

administration behavior, we compared the mean number of active lever presses during the 

last three days of extinction in the MEx and VhEx groups. Importantly, no significant 

differences were observed between these groups of rats (t14=-1.71, p>0.05). 

3.2 - Gene expression 

Most of the RIN values obtained ranged from 7 to 9. In some very rare exceptions we 

obtained lower values, but in those cases we verified that the Cts of the GAPDH expression 

were in the same range as those of the other samples in the group. In the amygdala, the gene 

expression analysis identified a significant effect of the treatment on the expression of the 

Regulatory Associated Protein of MTOR Complex 1 (Rptor) (F1,28=5.57, p=0.025, η2=0.16) and 

the Eukaryotic Translation Initiation Factor 4E Binding Protein 2 (Eif4ebp2) (F1,28=4.28, p=0.048, 

η2=0.13: Table 1). The expression of these genes increased in the rats that self-administered 

morphine and this effect persisted even after extinction training. In this structure, we also 



found a main effect of the Phase factor on the expression of AKT Serine/Threonine Kinase 1 

(Akt1) (F1,28=6.9, p=0.014, η2=0.19) and the Insulin Like Growth Factor 2 Receptor (Igf2r) 

(F1,28=5.74, p=0.024, η2=0.15). In both cases transcription was enhanced after the extinction 

sessions. Significant differences in the Insulin Receptor (Insr) expression were evident between 

the four groups (χ2
3=14.96, p<0.002) and the multiple comparison test showed that the VhSA 

rats expressed Insr more strongly than the MSA and VhEx rats. 

Igf2r expression was also affected In the PFC by the Phase factor (F1,26=7.32, p=0.012, 

η2=0.21), although its expression was weaker after the extinction sessions.  

There were no statistically significant differences in the expression of any of the genes 

analyzed in the NAcc. 

3.3 - Phosphoprotein levels 

We did not find any significant effects of the Treatment on the phosphoproteins 

assessed in each of the brain areas examined. However, in the amygdala the Phase factor 

affected the levels of phospho-GSK-3α (Ser21/9) (F1,28=5.32, p=0.029, η2=0.14) and the 68kDa 

band of phospho-PDK1 (Ser241) (F1,29=6.18, p=0.019, η2=0.17). The levels of both these 

phosphoproteins were lower after the extinction sessions (Fig. 5). 

4 - Discussion 

We assessed the effects of morphine self-administration and the subsequent 

extinction of this behavior on the expression of several genes and on the levels of specific 



phosphorylated proteins of the mTOR signaling pathway in three brain areas related to reward 

learning and extinction: the amygdala, the NAcc and the prefrontal cortex. 

The morphine self-administration program employed only affected the expression of 

the Rptor and Eif4ebp2 genes in the amygdala, an effect that persisted after extinction (Table 

1). The Rptor gene encodes the regulatory-associated protein of mTOR (Raptor), a protein in 

the mTOR complex 1 (mTORC1), while the product of the Eif4ebp2 gene is the eukaryotic 

translation initiation factor 4E-binding protein 2 (EIF4EBP2), one of the downstream effectors 

of this complex (Shimobayashi and Hall, 2014). Raptor regulates mTOR kinase activity, and it 

also recruits mTORC1 substrates like the S6 kinases and EIF4E binding proteins like EIF4EBP2 

(Hara et al., 2002; Kim and Sabatini, 2004; Ma and Blenis, 2009). The eIF4EBP proteins in turn 

regulate EIF4E activity, which is responsible for the cap-dependent translation of mRNAs 

(Richter and Sonenberg, 2005). Our dissection of the amygdala mostly included the BLA, an 

area with an important role in conditioning learning given that it encodes the motivational 

value of the conditioned stimulus, either appetitive or aversive (Everitt et al., 2003). The BLA 

also has a role in the formation, retrieval and reconsolidation of drug-related memories (Luo et 

al., 2013). Indeed, c-Fos activity in the BLA is enhanced in rats showing CPP or conditioned 

place aversion (CPA) to morphine (Guo et al., 2008). Considering all this evidence together, the 

enduring increase in mTORC1 activity after morphine self-administration in the BLA (as 

suggested by the elevated transcription of the Rptor and Eif4ebp2 genes) could contribute to 



the stabilization of those morphine-related aversive and appetitive memories that persist even 

after extinction. 

Another interesting result was the variation in Insr gene expression that decreases 

drastically after morphine self-administration relative to rats exposed to the vehicle alone 

(Table 1). The Insr gene encodes the insulin receptor, one of the upstream activators of the 

PI3K/Akt/mTOR pathway (Niswender et al., 2003; Taha and Klip, 1999). Moreover, morphine 

can also activate this pathway through µ opioid receptors (Law et al., 2000; Polakiewicz et al., 

1998). It is plausible that our results could reflect the opioid inhibition of insulin signaling due 

to a crosstalk between the downstream signaling pathways of both receptors, as shown 

previously in cell cultures (Li et al., 2003). These results are also consistent with the evidence 

that a chronic morphine regime downregulates the insulin receptor substrate 2 (IRS2)-Akt 

signaling pathway in the ventral tegmental area (Russo et al., 2007). This dampened 

endogenous insulin signaling might contribute to the development or expression of morphine 

withdrawal syndrome. Indeed, insulin administration reduces withdrawal symptoms in rats 

(Singh et al., 2015). Furthermore, rats that self-administered morphine did not display the 

decrease over time that vehicle treated rats did. This increase in the Insr might suggest 

recovery from withdrawal syndrome although direct evidence for this is lacking. 

Previous works in the literature have suggested that SGK1 is up-regulated after 

opiate exposure. For example, Sgk1 mRNA expression is enhanced in whole brain lysates after 

chronic oxycodone administration, a µ opioid receptor agonist (Hassan et al., 2009). 



Elsewhere, Sgk1 mRNA levels and activity was seen to increase in the VTA after 7 days of 

passive morphine administration (i.p. 15mg/kg: Heller et al., 2015) and chronic morphine 

administration passively increases mTORC1 activity in the VTA, while decreasing that of 

mTORC2. Such treatment also decreased the soma size of VTA dopaminergic neurons, an 

effect that increased cell activity but that decreased dopamine output in the NAcc shell. These 

effects were blocked by overexpressing Rictor in the VTA, indicating that reduced mTORC2 

activity mediates these adaptations (Mazei-Robison et al., 2011). SGK1 activation is mediated 

by the mTORC2 complex (García-Martínez and Alessi, 2008), and has previously been shown to 

play an important role in spatial memory consolidation (Lee et al., 2006; Tsai et al., 2002) and 

LTP (Ma, 2006).  In spite of all these data, we only observed a marginal increase of Sgk1 

mRNA expression (in all the brain areas studied) that did not reach statistical significance, 

suggesting a crucial effect for contingency in the effects of opiates on this mTORC2 effector  

(Table 1). 

We also found changes independent of the treatment but that rather reflected the 

experimental phase. The Akt1 and Igfr2 genes were more strongly expressed in the amygdala 

in the groups that underwent extinction training, even in the rats that received a saline 

solution during the self-administration phase. As opposed to the amygdala, Igfr2 expression in 

the PFC was reduced in both groups after extinction (Table 1). These changes could reflect the 

natural regulation of these genes over the lifetime of the rats or maybe, they were a result of 

the experimental manipulations the rats were subjected to (surgery, handling, behavioral 



experiments…). Apart from the changes in gene expression, we also found variations in the 

phosphorylation of GSK-3α (Ser21/9) and of the 68kDa isoform of PDK1 (Ser241), both of 

which changed after extinction in the two groups irrespective of their prior treatment (Fig. 5). 

The levels of both phosphoproteins decreased in the BLA after extinction, and those of 

phospho-GSK-3α (Ser21/9) also tended to fall in the NAcc (Fig. 4). 

There are some limitations to this study that need to be discussed. Firstly, we lose 

the registry of inactive lever presses. Although we have the data from the saline self-

administering rats that could account to some extent for non-specific lever presses, we may 

be overseeing potential effects of morphine self-administration in locomotor activity. The 

second limitation is that some effects of the previous food-reinforced operant conditioning on 

mTOR signaling might be affecting our results. This possibility nonetheless seems unlikely 

because the mTOR pathway is not involved in food reward seeking (Wang et al., 2010). In spite 

of these limitations, our findings open the door to new experiments using pharmacological or 

genetic manipulations of the mTOR pathway in the regions studied here that will provide a 

more definite evidence for the causal involvement of this pathway in the rewarding actions of 

morphine and in the extinction of morphine-related behaviours. 

5 - Concluding remarks 

In this study, we have addressed the putative effects of morphine self-administration 

and extinction on several elements of the mTOR pathway. Of the three areas studied, most of 

the significant results were found in the amygdala. The role of this area in the processes of 



drug addiction and relapse is well known but to our knowledge, no one has previously 

observed the potential involvement of the mTOR pathway in this limbic structure. The genes 

and phosphoproteins identified are mainly involved in regulating protein synthesis, and they 

may also be recruited during memory formation and reconsolidation, concurring with earlier 

data. In the light of these findings, it would be interesting to more directly study the 

therapeutic value of this signaling pathway in opioid-related disorders. 
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