579 research outputs found
The effect of distributed exchange parameters on magnetocaloric refrigeration capacity in amorphous and nanocomposite materials
The temperature dependent magnetization of nanocomposite alloys has been fit with a modified Handrich-Kobe equation with an asymmetric exchange fluctuation parameter combined with the Arrott-Noakes equation. The two equations of state are combined to calculate the entropy change in the magnetocaloric effect associated with the ferromagnetic to paramagnetic phase transformation. The complete fit for the M(T) of (Fe70Ni30)88Zr7B4Cu nanocomposite powder is accomplished by combining the two theories. We investigate the broadening of the second-order transition arising from asymmetric exchange parameters and resulting from the fluctuations of interatomic spacing found in an amorphous matrix and the asymmetric dependence of exchange energy on interatomic spacing. The magnetic entropy curve revealed extra broadening with a refrigeration capacity (RC) value of 135 J/kg at 5 T, which is comparable to (Fe76Cr8-xMoxCu1B15) ribbons, which have a RC value of 180 J/kg for the same applied field. Broadening of the magnetic entropy can lead to larger RC values and a wider working temperature range, making nanocomposite alloys promising for magnetocaloric applications
A Numerical Solution to Fractional Diffusion Equation for Force-Free Case
A collocation finite element method for solving fractional diffusion equation for force-free case is considered. In this paper, we develop an approximation method based on collocation finite elements by cubic B-spline functions to solve fractional diffusion equation for force-free case formulated with Riemann-Liouville operator. Some numerical examples of interest are provided to show the accuracy of the method. A comparison between exact analytical solution and a numerical one has been made
miR-132/212 knockout mice reveal roles for these miRNAs in regulating cortical synaptic transmission and plasticity
miR-132 and miR-212 are two closely related miRNAs encoded in the same intron of a small non-coding gene, which have been suggested to play roles in both immune and neuronal function. We describe here the generation and initial characterisation of a miR-132/212 double knockout mouse. These mice were viable and fertile with no overt adverse phenotype. Analysis of innate immune responses, including TLR-induced cytokine production and IFNβ induction in response to viral infection of primary fibroblasts did not reveal any phenotype in the knockouts. In contrast, the loss of miR-132 and miR-212, while not overtly affecting neuronal morphology, did affect synaptic function. In both hippocampal and neocortical slices miR-132/212 knockout reduced basal synaptic transmission, without affecting paired-pulse facilitation. Hippocampal long-term potentiation (LTP) induced by tetanic stimulation was not affected by miR-132/212 deletion, whilst theta burst LTP was enhanced. In contrast, neocortical theta burst-induced LTP was inhibited by loss of miR-132/212. Together these results indicate that miR-132 and/or miR-212 play a significant role in synaptic function, possibly by regulating the number of postsynaptic AMPA receptors under basal conditions and during activity-dependent synaptic plasticity
Single \pi^- production in np collisions for excess energies up to 90 MeV
The quasifree reaction np\to pp\pim was studied in a kinematically complete
experiment by bombarding a liquid hydrogen target with a deuteron beam of
momentum 1.85 GeV/c and analyzing the data along the lines of the spectator
model. In addition to the three charged ejectiles the spectator proton was also
detected in the large-acceptance time-of-flight spectrometer COSY-TOF. It was
identified by its momentum and flight direction thus yielding access to the
Fermi motion of the bound neutron and to the effective neutron 4-momentum
vector which differed from event to event. A range of almost 90
MeV excess energy above threshold was covered. Energy dependent angular
distributions, invariant mass spectra as well as fully covered Dalitz plots
were deduced. Sizeable FSI effects were found as were contributions of
and partial waves. The behavior of the elementary cross section
close to threshold is discussed in view of new cross section
data. In comparison with existing literature data the results provide a
sensitive test of the spectator model.Comment: 21 pages, 9 figures, 4 tables, submitted to EPJ
AMULET: a novel read count-based method for effective multiplet detection from single nucleus ATAC-seq data.
Detecting multiplets in single nucleus (sn)ATAC-seq data is challenging due to data sparsity and limited dynamic range. AMULET (ATAC-seq MULtiplet Estimation Tool) enumerates regions with greater than two uniquely aligned reads across the genome to effectively detect multiplets. We evaluate the method by generating snATAC-seq data in the human blood and pancreatic islet samples. AMULET has high precision, estimated via donor-based multiplexing, and high recall, estimated via simulated multiplets, compared to alternatives and identifies multiplets most effectively when a certain read depth of 25K median valid reads per nucleus is achieved
Sestrins induce natural killer function in senescent-like CD8(+) T cells
Aging is associated with remodeling of the immune system to enable the maintenance of life-long immunity. In the CD8⁺ T cell compartment, aging results in the expansion of highly differentiated cells that exhibit characteristics of cellular senescence. Here we found that CD27⁻CD28⁻CD8⁺ T cells lost the signaling activity of the T cell antigen receptor (TCR) and expressed a protein complex containing the agonistic natural killer (NK) receptor NKG2D and the NK adaptor molecule DAP12, which promoted cytotoxicity against cells that expressed NKG2D ligands. Immunoprecipitation and imaging cytometry indicated that the NKG2D-DAP12 complex was associated with sestrin 2. The genetic inhibition of sestrin 2 resulted in decreased expression of NKG2D and DAP12 and restored TCR signaling in senescent-like CD27⁻CD28⁻CD8⁺ T cells. Therefore, during aging, sestrins induce the reprogramming of non-proliferative senescent-like CD27⁻CD28⁻CD8⁺ T cells to acquire a broad-spectrum, innate-like killing activity
Improved study of a possible Theta+ production in the pp -> p K0 sigma+ reaction with the COSY-TOF spectrometer
The pp -> p K0 Sigma+ reaction was investigated with the TOF spectrometer at
COSY at 3.059 GeV/c incident beam momentum. The main objective was to clarify
whether or not a narrow exotic S = +1 resnance, the Theta+ pentaquark, is
populated at 1.53 GeV/c2 in the K0 p subsystem with a data sample of much
higher statistical significance compared to the previously reported data in
this channel. An analysis of these data does not confirm the existence of the
Theta+ pentaquark. This is expressed as an upper limit for the cross section
sigma (pp -> p K0 Sigma+) < 0.15 microbarn at the 95 percent confidence level.Comment: 11 pages, 5 figure
Carglumic acid enhances rapid ammonia detoxification in classical organic acidurias with a favourable risk-benefit profile: A retrospective observational study
BACKGROUND: Isovaleric aciduria (IVA), propionic aciduria (PA) and methylmalonic aciduria (MMA) are inherited organic acidurias (OAs) in which impaired organic acid metabolism induces hyperammonaemia arising partly from secondary deficiency of N-acetylglutamate (NAG) synthase. Rapid reduction in plasma ammonia is required to prevent neurological complications. This retrospective, multicentre, open-label, uncontrolled, phase IIIb study evaluated the efficacy and safety of carglumic acid, a synthetic structural analogue of NAG, for treating hyperammonaemia during OA decompensation. METHODS: Eligible patients had confirmed OA and hyperammonaemia (plasma NH3 > 60 μmol/L) in ≥1 decompensation episode treated with carglumic acid (dose discretionary, mean (SD) first dose 96.3 (73.8) mg/kg). The primary outcome was change in plasma ammonia from baseline to endpoint (last available ammonia measurement at ≤18 hours after the last carglumic acid administration, or on Day 15) for each episode. Secondary outcomes included clinical response and safety. RESULTS: The efficacy population (received ≥1 dose of study drug and had post-baseline measurements) comprised 41 patients (MMA: 21, PA: 16, IVA: 4) with 48 decompensation episodes (MMA: 25, PA: 19, IVA: 4). Mean baseline plasma ammonia concentration was 468.3 (±365.3) μmol/L in neonates (29 episodes) and 171.3 (±75.7) μmol/L in non-neonates (19 episodes). At endpoint the mean plasma NH3 concentration was 60.7 (±36.5) μmol/L in neonates and 55.2 (±21.8) μmol/L in non-neonates. Median time to normalise ammonaemia was 38.4 hours in neonates vs 28.3 hours in non-neonates and was similar between OA subgroups (MMA: 37.5 hours, PA: 36.0 hours, IVA: 40.5 hours). Median time to ammonia normalisation was 1.5 and 1.6 days in patients receiving and not receiving concomitant scavenger therapy, respectively. Although patients receiving carglumic acid with scavengers had a greater reduction in plasma ammonia, the endpoint ammonia levels were similar with or without scavenger therapy. Clinical symptoms improved with therapy. Twenty-five of 57 patients in the safety population (67 episodes) experienced AEs, most of which were not drug-related. Overall, carglumic acid seems to have a good safety profile for treating hyperammonaemia during OA decompensation. CONCLUSION: Carglumic acid when used with or without ammonia scavengers, is an effective treatment for restoration of normal plasma ammonia concentrations in hyperammonaemic episodes in OA patients
- …