44 research outputs found

    “I can't escape!”: Avoidantly attached individuals' conflict resolution and relationship satisfaction before and during the COVID-19 lockdown

    Get PDF
    Increased time spent together and the lockdown resulting from the COVID-19 pandemic may have created new scenarios for marital conflict. We analyzed how home confinement affects avoidantly attached individuals': (a) resolution strategies to cope with couple conflict, (b) perception of partner's resolution strategies, and (c) overall relationship satisfaction. The sample comprised 549 individuals, divided into two subsamples: (a) the confined group, individuals confined with their partners (n = 275); and (b) the comparison group, coupled individuals from a dataset collected before the pandemic (n = 274). Results indicate that the proposed model works in different contexts (non-confinement and confinement situations), but there are some significant differences in the magnitude of some of the relationships between the variables, being stronger in the confinement group than in the comparison group. In the confined group, in individuals with avoidant attachment, withdrawal was associated with lower relationship satisfaction and a higher demand partner perceived to a higher extent than in the comparison group. This might explain the lower satisfaction with the relationship of the confined group. The different conflict resolution strategies of the couple mediated between avoidant attachment and relationship satisfaction in both groups (confined and comparison). It is concluded that individuals' attachment orientation is a key factor in how individuals experienced their close relationships during the confinement.This research was funded by the a pre-doctoral grant from the Education Department of the Basque Government (PRE_2016_1_0138) awarded to the first author under the second author's supervision, grant by the Basque Government Research Groups (“Culture, Cognition, and Emotion” Consolidated Group; IT-1598-22), two grants by the Spanish Ministry of Science and Innovation (PID2020-115738GB-I0 and PID2020-116658GB-I00, funded by MCIN/AEI/10.13039/501100011033/); and by a grant awarded by the Regional Government of Castilla y León (Spain) to the Social Inclusion and Quality of Life research group (2019/00184/001)

    Immune reactivity to Trypanosoma cruzi chimeric proteins for Chagas disease diagnosis in immigrants living in a non-endemic setting

    Get PDF
    Chagas disease; Chimeric antigens; Trypanosoma cruziMalaltia de Chagas; Antígens quimèrics; Trypanosoma cruziEnfermedad de Chagas; Antígenos quiméricos; Trypanosoma cruziBACKGROUND: Chronic Chagas Disease (CD) diagnosis is based on serological methods employing crude, semipurified or recombinant antigens, which may result in low sensitivity or cross-reactivity. To reduce these restrictions, we developed a strategy involving use of molecules containing repetitive fragments of Trypanosoma cruzi conserved proteins. Diagnostic performance of IBMP-8.1 and IBMP-8.4 chimeric antigens (Molecular Biology Institute of Paraná - IBMP in Portuguese acronym) was assessed to diagnose T. cruzi-infected and non-infected immigrants living in Barcelona (Spain), a non-endemic setting for Chagas disease. METHODS: Reactivity of IBMP-8.1 and IBMP-8.4 was assessed using an in-house automated ELISA with 347 positive and 331 negative individuals to Chagas disease. Antigenic cross-reactivity was measured with sera samples from pregnant women with Toxoplasma gondii (n = 98) and Zika virus (n = 75) antibodies. RESULTS: The area under the curve values was 1 and 0.99 for the IBMP-8.1 and IBMP-8.4 proteins, respectively, demonstrating excellent diagnostic accuracy. The reactivity index was higher for IBMP-8.1 than IBMP-8.4 in positive samples and no significant difference in reactivity index was observed in negative samples. Sensitivity ranged from 99.4% for IBMP-8.1 to 99.1% for IBMP-8.4 and was not statistically different. Specificity for IBMP-8.1 reached 100 and 99.7% for IBMP-8.4, both nearly 100% accurate. No antigenic cross-reactivity was observed and reactivity index was similar to that for negative Chagas disease individuals. CONCLUSIONS: Our results showed an outstanding performance of IBMP-8.1 and IBMP-8.4 chimeric antigens by ELISA and suggest both chimeric antigens could also be used for Chagas disease diagnosis in immigrants living in non-endemic settings

    Induction and decay of functional complement-fixing antibodies by the RTS,S malaria vaccine in children, and a negative impact of malaria exposure

    Get PDF
    Background: Leading malaria vaccine, RTS,S, is based on the circumsporozoite protein (CSP) of sporozoites. RTS,S confers partial protection against malaria in children, but efficacy wanes relatively quickly after primary immunization. Vaccine efficacy has some association with anti-CSP IgG; however, it is unclear how these antibodies function, and how functional antibodies are induced and maintained over time. Recent studies identified antibodycomplement interactions as a potentially important immune mechanism against sporozoites. Here, we investigated whether RTS,S vaccine-induced antibodies could function by interacting with complement. Methods: Serum samples were selected from children in a phase IIb trial of RTS,S/AS02A conducted at two study sites of high and low malaria transmission intensity in Manhiça, Mozambique. Samples following primary immunization and 5-year post-immunization follow-up time points were included. Vaccine-induced antibodies were characterized by isotype, subclass, and epitope specificity, and tested for the ability to fix and activate complement. We additionally developed statistical methods to model the decay and determinants of functional antibodies after vaccination. Results: RTS,S vaccination induced anti-CSP antibodies that were mostly IgG1, with some IgG3, IgG2, and IgM. Complement-fixing antibodies were effectively induced by vaccination, and targeted the central repeat and Cterminal regions of CSP. Higher levels of complement-fixing antibodies were associated with IgG that equally recognized both the central repeat and C-terminal regions of CSP. Older age and higher malaria exposure were significantly associated with a poorer induction of functional antibodies. There was a marked decay in functional complement-fixing antibodies within months after vaccination, as well as decays in IgG subclasses and IgM. Statistical modeling suggested the decay in complement-fixing antibodies was mostly attributed to the waning of anti-CSP IgG1, and to a lesser extent IgG3. Conclusions: We demonstrate for the first time that RTS,S can induce complement-fixing antibodies in young malaria-exposed children. The short-lived nature of functional responses mirrors the declining vaccine efficacy of RTS,S over time. The negative influence of age and malaria exposure on functional antibodies has implications for understanding vaccine efficacy in different settings. These findings provide insights into the mechanisms and longevity of vaccine-induced immunity that will help inform the future development of highly efficacious and longlasting malaria vaccines

    What Accounts for Physical Activity during Pregnancy? A Study on the Sociodemographic Predictors of Self-Reported and Objectively Assessed Physical Activity during the 1st and 2nd Trimesters of Pregnancy

    Get PDF
    Physical activity (PA) during pregnancy has positive health implications for both mother and child. However, current literature indicates that not all pregnant women meet the international recommendations for PA (at least 150 min/week of moderate-to-vigorous PA). The main objective of this study was to assess PA levels among pregnant women in the city of Donostia-San Sebastian and identify their main sociodemographic predictors. We recruited 441 women in the 12th week of pregnancy from the local public obstetric health services. Women wore an accelerometer for one week during two separate time points (1st and 2nd trimesters of pregnancy) and completed a questionnaire assessing several sociodemographic variables as well as self-reported PA. With this information, we estimated women’s overall PA levels during both time points. The fulfillment of PA recommendations raised up to 77% and 85% during the first and second trimesters, respectively. We found that a higher number of children and a greater preference for exercise positively predicted light-to-moderate PA, being the most consistent predictors. The availability of a greater number of cars negatively predicted moderate-to-vigorous PA.This research was funded by DiputaciónForal de Gipuzkoa (the Gipuzkoan Provincial Council), grant number 105/19 within their call “Programa Red Guipuzcoana de Ciencia, Tecnología e Innovación 2019” (Network Gipuzkoan Program for Science, Technology and Innovation 2019)

    Changing plasma cytokine, chemokine and growth factor profiles upon differing malaria transmission intensities

    Get PDF
    Background: Malaria epidemiological and immunological data suggest that parasite tolerance wanes in the absence of continuous exposure to the parasite, potentially enhancing pathogenesis. The expansion of control interventions and elimination campaigns raises the necessity to better understand the host factors leading to susceptibility or tolerance that are afected by rapid changes in malaria transmission intensity (MTI). Mediators of cellular immune responses are responsible for the symptoms and pathological alterations during disease and are expected to change rapidly upon malaria exposure or cessation. Methods: The plasma concentrations of 30 cytokine, chemokine and growth factors in individuals of all ages from a malaria endemic area of southern Mozambique were compared between 2 years of diferent MTI: 2010 (lower, n=234) and 2013 (higher, n=143). The efect of the year on the correlations between cytokines, chemokines and growth factors and IgGs to Plasmodium falciparum (markers of exposure) was explored. The efects of age, sex, neighbourhood and parasitaemia on analyte levels and their interactions with year were also assessed. Results: An inverse correlation of several cellular immune mediators with malarial antibodies in 2013, and a lack of correlation or even a positive correlation in 2010 were observed. Most cytokines, chemokines and growth factors, regardless of their immune function, had higher concentrations in 2010 compared with 2013 in P. falciparum-infected and uninfected subjects. Age and neighbourhood showed an efect on analyte concentrations. Conclusions: The results show a diferent regulation of the cellular immune response in 2010 vs 2013 which could be related to a loss of immune-tolerance after a decline in MTI in 2010 and previous years, and a rapid re-establishment of tolerance as a consequence of more continuous exposure as MTI began increasing in 2012. Cellular immune mediators warrant further investigation as possible surrogates of MTI-associated host susceptibility or tolerance

    Analysis of factors affecting the variability of a quantitative suspension bead array assay measuring IgG to multiple Plasmodium antigens

    Get PDF
    Reducing variability of quantitative suspension array assays is key for multi-center and large sero-epidemiological studies. To maximize precision and robustness of an in-house IgG multiplex assay, we analyzed the effect of several conditions on variability to find the best combination. The following assay conditions were studied through a fractional factorial design: antigen-bead coupling (stock vs. several), sample predilution (stock vs. daily), temperature of incubation of sample with antigen-bead (22°C vs. 37°C), plate washing (manual vs. automatic) and operator expertise (expert vs. apprentice). IgG levels against seven P. falciparum antigens with heterogeneous immunogenicities were measured in test samples, in a positive control and in blanks. We assessed the variability and MFI quantification range associated to each combination of conditions, and their interactions, and evaluated the minimum number of samples and blank replicates to achieve good replicability. Results showed that antigen immunogenicity and sample seroreactivity defined the optimal dilution to assess the effect of assay conditions on variability. We found that a unique antigen-bead coupling, samples prediluted daily, incubation at 22°C, and automatic washing, had lower variability. However, variability increased when performing several couplings and incubating at 22°C vs. 37°C. In addition, no effect of temperature was seen with a unique coupling. The expertise of the operator had no effect on assay variability but reduced the MFI quantification range. Finally, differences between sample replicates were minimal, and two blanks were sufficient to capture assay variability, as suggested by the constant Intraclass Correlation Coefficient of three and two blanks. To conclude, a single coupling was the variable that most consistently reduced assay variability, being clearly advisable. In addition, we suggest having more sample dilutions instead of replicates to increase the likelihood of sample MFIs falling in the linear part of the antigen-specific curve, thus increasing precision

    Chronic Exposure to Malaria Is Associated with Inhibitory and Activation Markers on Atypical Memory B Cells and Marginal Zone-Like B Cells

    Get PDF
    In persistent infections that are accompanied by chronic immune activation, such as human immunodeficiency virus, hepatitis C virus, and malaria, there is an increased frequency of a phenotypically distinct subset of memory B cells lacking the classic memory marker CD27 and showing a reduced capacity to produce antibodies. However, critical knowledge gaps remain on specific B cell changes and immune adaptation in chronic infections. We hypothesized that expansion of atypical memory B cells (aMBCs) and reduction of activated peripheral marginal zone (MZ)-like B cells in constantly exposed individuals might be accompanied by phenotypic changes that would confer a tolerogenic profile, helping to establish tolerance to infections. To better understand malaria-associated phenotypic abnormalities on B cells, we analyzed peripheral blood mononuclear cells from 55 pregnant women living in a malaria-endemic area of Papua Nueva Guinea and 9 Spanish malaria-naïve individuals using four 11-color flow cytometry panels. We assessed the expression of markers of B cell specificity (IgG and IgM), activation (CD40, CD80, CD86, b220, TACI, and CD150), inhibition (PD1, CD95, and CD71), and migration (CCR3, CXCR3, and CD62l). We found higher frequencies of active and resting aMBC and marked reduction of MZ-like B cells, although changes in absolute cell counts could not be assessed. Highly exposed women had higher PD1+-, CD95+-, CD40+-, CD71+-, and CD80+-activated aMBC frequencies than non-exposed subjects. Malaria exposure increased frequencies of b220 and proapoptotic markers PD1 and CD95, and decreased expression of the activation marker TACI on MZ-like B cells. The increased frequencies of inhibitory and apoptotic markers on activated aMBCs and MZ-like B cells in malaria-exposed adults suggest an immune-homeostatic mechanism for maintaining B cell development and function while simultaneously downregulating hyperreactive B cells. This mechanism would keep the B cell activation threshold high enough to control infection but impaired enough to tolerate it, preventing systemic inflammation

    Antibody responses to α-Gal in African children vary with age and site and are associated with malaria protection

    Get PDF
    Naturally-acquired antibody responses to malaria parasites are not only directed to protein antigens but also to carbohydrates on the surface of Plasmodium protozoa. Immunoglobulin M responses to α-galactose (α-Gal) (Galα1-3Galβ1-4GlcNAc-R)-containing glycoconjugates have been associated with protection from P. falciparum infection and, as a result, these molecules are under consideration as vaccine targets; however there are limited field studies in endemic populations. We assessed a wide breadth of isotype and subclass antibody response to α-Gal in children from Mozambique (South East Africa) and Ghana (West Africa) by quantitative suspension array technology. We showed that anti-α-Gal IgM, IgG and IgG1–4 levels vary mainly depending on the age of the child, and also differ in magnitude in the two sites. At an individual level, the intensity of malaria exposure to P. falciparum and maternally-transferred antibodies affected the magnitude of α-Gal responses. There was evidence for a possible protective role of anti-α-Gal IgG3 and IgG4 antibodies. However, the most consistent findings were that the magnitude of IgM responses to α-Gal was associated with protection against clinical malaria over a one-year follow up period, especially in the first months of life, while IgG levels correlated with malaria risk

    Antibody responses to the RTS,S/AS01E vaccine and plasmodium falciparum antigens after a booster dose within the phase 3 trial in Mozambique

    Get PDF
    Study of immune correlates against malaria after vaccination with RTS,S/ASO1E: a comphrensive immunological arm of a Phase III double-blind, randomize, controlled multi-centre trial (MAL067).Dades primàries associades a l'article publicat a NPJ Vaccines, vol. 5 [https://doi.org/10.1038/s41541-020-0192-7]The RTS,S/AS01E vaccine has shown consistent but partial vaccine efficacy in a pediatric phase 3 26 clinical trial using a 3-dose immunization schedule. A fourth dose 18 months after the primary 27 vaccination was shown to restore the waning efficacy. However, only total IgG against the 28 immunodominant malaria vaccine epitope has been analyzed following the booster. To better 29 characterize the magnitude, nature and longevity of the immune response to the booster, we 30 measured levels of total IgM, IgG and IgG1-4 subclasses against three constructs of the 31 circumsporozoite protein (CSP) and the hepatitis B surface antigen (HBsAg, also present in RTS,S) 32 by quantitative suspension array technology in 50 subjects in the phase 3 trial in Manhiça, 33 Mozambique. To explore the impact of vaccination on naturally acquired immune responses, we 34 measured antibodies to P. falciparum antigens not included in RTS,S. We found increased IgG, 35 IgG1, IgG3 and IgG4, but not IgG2 nor IgM, levels against vaccine antigens one month after the 4th 36 dose. Overall, antibody responses to the booster dose were lower than the initial peak 37 response to primary immunization and children had higher IgG and IgG1 levels than infants. 38 Higher anti-Rh5 IgG and IgG1-4 levels were detected after the booster dose, suggesting that RTS,S 39 partial protection could increase some blood stage antibody responses. Our work shows that the 40 response to the RTS,S/AS01E booster dose is different from the primary vaccine immune 41 response and highlights the dynamic changes in subclass antibody patterns upon the vaccine 42 booster and with acquisition of adaptive immunity to malaria

    Baseline exposure, antibody subclass, and hepatitis B response differentially affect malaria protective immunity following RTS,S/AS01E vaccination in African children

    Get PDF
    Background: The RTS,S/AS01E vaccine provides partial protection against malaria in African children, but immune responses have only been partially characterized and do not reliably predict protective efficacy. We aimed to evaluate comprehensively the immunogenicity of the vaccine at peak response, the factors affecting it, and the antibodies associated with protection against clinical malaria in young African children participating in the multicenter phase 3 trial for licensure. Methods: We measured total IgM, IgG, and IgG1–4 subclass antibodies to three constructs of the Plasmodium falciparum circumsporozoite protein (CSP) and hepatitis B surface antigen (HBsAg) that are part of the RTS,S vaccine, by quantitative suspension array technology. Plasma and serum samples were analyzed in 195 infants and children from two sites in Ghana (Kintampo) and Mozambique (Manhiça) with different transmission intensities using a case-control study design. We applied regression models and machine learning techniques to analyze immunogenicity, correlates of protection, and factors affecting them. Results: RTS,S/AS01E induced IgM and IgG, predominantly IgG1 and IgG3, but also IgG2 and IgG4, subclass responses. Age, site, previous malaria episodes, and baseline characteristics including antibodies to CSP and other antigens reflecting malaria exposure and maternal IgGs, nutritional status, and hemoglobin concentration, significantly affected vaccine immunogenicity. We identified distinct signatures of malaria protection and risk in RTS,S/AS01E but not in comparator vaccinees. IgG2 and IgG4 responses to RTS,S antigens post-vaccination, and anti-CSP and anti-P. falciparum antibody levels pre-vaccination, were associated with malaria risk over 1-year follow-up. In contrast, antibody responses to HBsAg (all isotypes, subclasses, and timepoints) and post-vaccination IgG1 and IgG3 to CSP C-terminus and NANP were associated with protection. Age and site affected the relative contribution of responses in the correlates identified. Conclusions: Cytophilic IgG responses to the C-terminal and NANP repeat regions of CSP and anti-HBsAg antibodies induced by RTS,S/AS01E vaccination were associated with malaria protection. In contrast, higher malaria exposure at baseline and non-cytophilic IgG responses to CSP were associated with disease risk. Data provide new correlates of vaccine success and failure in African children and reveal key insights into the mode of action that can guide development of more efficacious next-generation vaccines
    corecore