40 research outputs found

    A pneumococcal MerR-like regulator and S-nitrosoglutathione reductase are required for systemic virulence

    Get PDF
    Copyright © 2007 by the Infectious Diseases Society of America. All rights reserved.A transcriptional regulator, NmlR(sp), has been identified in Streptococcus pneumoniae that is required for defense against nitric oxide (NO) stress. The nmlR(sp) gene is cotranscribed with adhC, which encodes an alcohol dehydrogenase that is able to reduce S-nitrosoglutathione (GSNO) with NADH as reductant. nmlR(sp) and adhC mutants exhibited a reduced level of NADH-GSNO oxidoreductase activity and were more susceptible to killing by NO than were wild-type cells. Comparison of the virulence of wild-type and mutant strains by use of a mouse model system showed that NmlR(sp) and AdhC do not play a key role in the adherence of pneumococci to the nasopharynx in vivo. An intraperitoneal challenge experiment revealed that both NmlR(sp) and AdhC were required for survival in blood. These data identify novel components of a NO defense system in pneumococci that are required for systemic infection.Uwe H. Stroeher, Robert S. Kidd, Sian L. Stafford, Michael P. Jennings, James C. Paton and Alastair G. McEwa

    Mapping multicenter randomized controlled trials in anesthesiology: a scoping review

    Get PDF
    Background: Evidence suggests that there are substantial inconsistencies in the practice of anesthesia. There has not yet been a comprehensive summary of the anesthesia literature that can guide future knowledge translation interventions to move evidence into practice. As the first step toward identifying the most promising interventions for systematic implementation in anesthesia practice, this scoping review of multicentre RCTs aimed to explore and map the existing literature investigating perioperative anesthesia-related interventions and clinical patient outcomes. Methods: Multicenter randomized controlled trials were eligible for inclusion if they involved a tested anesthesia-related intervention administered to adult surgical patients (≥ 16 years old), with a control group receiving either another anesthesia intervention or no intervention at all. The electronic databases Embase (via OVID), MEDLINE, and MEDLINE in Process (via OVID), and Cochrane Central Register of Control Trials (CENTRAL) were searched from inception to February 26, 2021. Studies were screened and data were extracted by pairs of independent reviewers in duplicate with disagreements resolved through consensus or a third reviewer. Data were summarized narratively. Results: We included 638 multicentre randomized controlled trials (n patients = 615,907) that met the eligibility criteria. The most commonly identified anesthesia-related intervention theme across all studies was pharmacotherapy (n studies = 361 [56.6%]; n patients = 244,610 [39.7%]), followed by anesthetic technique (n studies = 80 [12.5%], n patients = 48,455 [7.9%]). Interventions were most often implemented intraoperatively (n studies = 233 [36.5%]; n patients = 175,974 [28.6%]). Studies typically involved multiple types of surgeries (n studies = 187 [29.2%]; n patients = 206 667 [33.5%]), followed by general surgery only (n studies = 115 [18.1%]; n patients = 201,028 [32.6%]) and orthopedic surgery only (n studies = 94 [14.7%]; n patients = 34,575 [5.6%]). Functional status was the most commonly investigated outcome (n studies = 272), followed by patient experience (n studies = 168), and mortality (n studies = 153). Conclusions: This scoping review provides a map of multicenter RCTs in anesthesia which can be used to optimize future research endeavors in the field. Specifically, we have identified key knowledge gaps in anesthesia that require further systematic assessment, as well as areas where additional research would likely not add value. These findings provide the foundation for streamlining knowledge translation in anesthesia in order to reduce practice variation and enhance patient outcomes

    Differential activation of inflammatory pathways in A549 type II pneumocytes by Streptococcus pneumoniae strains with different adherence properties

    Get PDF
    BACKGROUND: Adherence of Streptococcus pneumoniae bacteria to lung cells is a first step in the progression from asymptomatic carriage to pneumonia. Adherence abilities vary widely among S. pneumoniae patient isolates. In this study, the binding properties of S. pneumoniae isolates and the effects of binding on activation of the Nuclear Factor-Kappa-B (NFÎşB) pathway and cytokine secretion by type II pneumocytes were measured. METHODS: Mechanisms of high- and low-binding S. pneumoniae adherence to A549 cells were investigated by blocking putative receptors on bacteria and host cells with antibody and by eluting choline-binding proteins off of bacterial surfaces. NFÎşB activation was measured by western blot and immunocytochemistry and cytokine secretion was detected by a protein array. RESULTS: This study shows that S. pneumoniae isolates from pneumonia patients (n = 298) can vary by as much as 1000-fold in their ability to bind to human lung epithelial cells. This difference resulted in differential activation of the NFÎşB pathway. High-, but not low-binding S. pneumoniae used Choline-binding protein A (CbpA) to bind to complement component C3 on epithelial cell surfaces. Interleukin-8 (IL-8) was the only cytokine secreted by cells treated with either low- or high-binding S. pneumoniae. CONCLUSION: These results indicate that S. pneumoniae clinical isolates are not homogeneous in their interaction with host epithelial cells. The differential activation of host cells by high- and low-binding S. pneumoniae strains could have implications for the treatment of pneumococcal pneumonia and for vaccine development

    A Two-Stage Meta-Analysis Identifies Several New Loci for Parkinson's Disease

    Get PDF
    A previous genome-wide association (GWA) meta-analysis of 12,386 PD cases and 21,026 controls conducted by the International Parkinson's Disease Genomics Consortium (IPDGC) discovered or confirmed 11 Parkinson's disease (PD) loci. This first analysis of the two-stage IPDGC study focused on the set of loci that passed genome-wide significance in the first stage GWA scan. However, the second stage genotyping array, the ImmunoChip, included a larger set of 1,920 SNPs selected on the basis of the GWA analysis. Here, we analyzed this set of 1,920 SNPs, and we identified five additional PD risk loci (combined p<5x10(-10), PARK16/1q32, STX1B/16p11, FGF20/8p22, STBD1/4q21, and GPNMB/7p15). Two of these five loci have been suggested by previous association studies (PARK16/1q32, FGF20/8p22), and this study provides further support for these findings. Using a dataset of post-mortem brain samples assayed for gene expression (n = 399) and methylation (n = 292), we identified methylation and expression changes associated with PD risk variants in PARK16/1q32, GPNMB/7p15, and STX1B/16p11 loci, hence suggesting potential molecular mechanisms and candidate genes at these risk loci

    The Pore-Forming Toxin Listeriolysin O Mediates a Novel Entry Pathway of L. monocytogenes into Human Hepatocytes

    Get PDF
    Intracellular pathogens have evolved diverse strategies to invade and survive within host cells. Among the most studied facultative intracellular pathogens, Listeria monocytogenes is known to express two invasins-InlA and InlB-that induce bacterial internalization into nonphagocytic cells. The pore-forming toxin listeriolysin O (LLO) facilitates bacterial escape from the internalization vesicle into the cytoplasm, where bacteria divide and undergo cell-to-cell spreading via actin-based motility. In the present study we demonstrate that in addition to InlA and InlB, LLO is required for efficient internalization of L. monocytogenes into human hepatocytes (HepG2). Surprisingly, LLO is an invasion factor sufficient to induce the internalization of noninvasive Listeria innocua or polystyrene beads into host cells in a dose-dependent fashion and at the concentrations produced by L. monocytogenes. To elucidate the mechanisms underlying LLO-induced bacterial entry, we constructed novel LLO derivatives locked at different stages of the toxin assembly on host membranes. We found that LLO-induced bacterial or bead entry only occurs upon LLO pore formation. Scanning electron and fluorescence microscopy studies show that LLO-coated beads stimulate the formation of membrane extensions that ingest the beads into an early endosomal compartment. This LLO-induced internalization pathway is dynamin-and F-actin-dependent, and clathrin-independent. Interestingly, further linking pore formation to bacteria/bead uptake, LLO induces F-actin polymerization in a tyrosine kinase-and pore-dependent fashion. In conclusion, we demonstrate for the first time that a bacterial pathogen perforates the host cell plasma membrane as a strategy to activate the endocytic machinery and gain entry into the host cell

    Extracellular matrix formation enhances the ability of streptococcus pneumoniae to cause invasive disease

    Get PDF
    Extent: 17p.During infection, pneumococci exist mainly in sessile biofilms rather than in planktonic form, except during sepsis. However, relatively little is known about how biofilms contribute to pneumococcal pathogenesis. Here, we carried out a biofilm assay on opaque and transparent variants of a clinical serotype 19F strain WCH159. After 4 days incubation, scanning electron microscopy revealed that opaque biofilm bacteria produced an extracellular matrix, whereas the transparent variant did not. The opaque biofilm-derived bacteria translocated from the nasopharynx to the lungs and brain of mice, and showed 100- fold greater in vitro adherence to A549 cells than transparent bacteria. Microarray analysis of planktonic and sessile bacteria from transparent and opaque variants showed differential gene expression in two operons: the lic operon, which is involved in choline uptake, and in the two-component system, ciaRH. Mutants of these genes did not form an extracellular matrix, could not translocate from the nasopharynx to the lungs or the brain, and adhered poorly to A549 cells. We conclude that only the opaque phenotype is able to form extracellular matrix, and that the lic operon and ciaRH contribute to this process. We propose that during infection, extracellular matrix formation enhances the ability of pneumococci to cause invasive disease.Claudia Trappetti, Abiodun D. Ogunniyi, Marco R. Oggioni and James C. Pato

    Molecular Evolution Patterns in Metastatic Lymph Nodes Reflect the Differential Treatment Response of Advanced Primary Lung Cancer

    No full text
    Tumor heterogeneity influences the clinical outcome of patients with cancer, and the diagnostic method to measure the tumor heterogeneity needs to be developed. We analyzed genomic features on pairs of primary and multiple metastatic lymph nodes from six patients with lung cancer using whole-exome sequencing and RNA sequencing. Although somatic single-nucleotide variants were shared in primary lung cancer and metastases, tumor evolution predicted by the pattern of genomic alterations was matched to anatomic location of the tumors. Four of six cases exhibited a branched clonal evolution pattern. Lymph nodes with acquired somatic variants demonstrated resistance to the cancer treatment. In this study, we demonstrated that multiple biopsies and sequencing strategies for different tumor regions are required for a comprehensive understanding of the landscape of genetic alteration and for guiding targeted therapy in advanced primary lung cancer. Cancer Res; 76(22); 6568-76. ©2016 AACR
    corecore