19 research outputs found

    'Everyday memory' impairments in autism spectrum disorders

    Get PDF
    ‘Everyday memory’ is conceptualised as memory within the context of day-to-day life and, despite its functional relevance, has been little studied in individuals with autism spectrum disorders (ASDs). In the first study of its kind, 94 adolescents with an ASD and 55 without an ASD completed measures of everyday memory from the Rivermead Behavioural Memory Test (RBMT) and a standard word recall task (Children’s Auditory Verbal Learning Test-2: CAVLT-2). The ASD group showed significant impairments on the RBMT, including in prospective memory, alongside impaired performance on the CAVLT-2. Social and communication ability was significantly associated with prospective remembering in an everyday memory context but not with the CAVLT-2. The complex nature of everyday memory and its relevance to ASD is discussed

    CCR2 Acts as Scavenger for CCL2 during Monocyte Chemotaxis

    Get PDF
    <div><h3>Background</h3><p>Leukocyte migration is essential for effective host defense against invading pathogens and during immune homeostasis. A hallmark of the regulation of this process is the presentation of chemokines in gradients stimulating leukocyte chemotaxis via cognate chemokine receptors. For efficient migration, receptor responsiveness must be maintained whilst the cells crawl on cell surfaces or on matrices along the attracting gradient towards increasing concentrations of agonist. On the other hand agonist-induced desensitization and internalization is a general paradigm for chemokine receptors which is inconsistent with the prolonged migratory capacity.</p> <h3>Methodology/Principal Findings</h3><p>Chemotaxis of monocytes was monitored in response to fluorescent CCL2-mCherry by time-lapse video microscopy. Uptake of the fluorescent agonist was used as indirect measure to follow the endogenous receptor CCR2 expressed on primary human monocytes. During chemotaxis CCL2-mCherry becomes endocytosed as cargo of CCR2, however, the internalization of CCR2 is not accompanied by reduced responsiveness of the cells due to desensitization.</p> <h3>Conclusions/Significance</h3><p>During chemotaxis CCR2 expressed on monocytes internalizes with the bound chemoattractant, but cycles rapidly back to the plasma membrane to maintain high responsiveness. Moreover, following relocation of the source of attractant, monocytes can rapidly reverse their polarization axis organizing a new leading edge along the newly formed gradient, suggesting a uniform distribution of highly receptive CCR2 on the plasma membrane. The present observations further indicate that during chemotaxis CCR2 acts as scavenger consuming the chemokine forming the attracting cue.</p> </div

    Regulation of miR-146a by RelA/NFkB and p53 in STHdhQ111/HdhQ111 Cells, a Cell Model of Huntington's Disease

    Get PDF
    Huntington's disease (HD) is caused by the expansion of N-terminal polymorphic poly Q stretch of the protein huntingtin (HTT). Deregulated microRNAs and loss of function of transcription factors recruited to mutant HTT aggregates could cause characteristic transcriptional deregulation associated with HD. We observed earlier that expressions of miR-125b, miR-146a and miR-150 are decreased in STHdhQ111/HdhQ111 cells, a model for HD in comparison to those of wild type STHdhQ7/HdhQ7 cells. In the present manuscript, we show by luciferase reporter assays and real time PCR that decreased miR-146a expression in STHdhQ111/HdhQ111 cells is due to decreased expression and activity of p65 subunit of NFkB (RelA/NFkB). By reporter luciferase assay, RT-PCR and western blot analysis, we also show that both miR-150 and miR-125b target p53. This partially explains the up regulation of p53 observed in HD. Elevated p53 interacts with RelA/NFkB, reduces its expression and activity and decreases the expression of miR-146a, while knocking down p53 increases RelA/NFkB and miR-146a expressions. We also demonstrate that expression of p53 is increased and levels of RelA/NFkB, miR-146a, miR-150 and miR-125b are decreased in striatum of R6/2 mice, a mouse model of HD and in cell models of HD. In a cell model, this effect could be reversed by exogenous expression of chaperone like proteins HYPK and Hsp70. We conclude that (i) miR-125b and miR-150 target p53, which in turn regulates RelA/NFkB and miR-146a expressions; (ii) reduced miR-125b and miR-150 expressions, increased p53 level and decreased RelA/NFkB and miR-146a expressions originate from mutant HTT (iii) p53 directly or indirectly regulates the expression of miR-146a. Our observation of interplay between transcription factors and miRNAs using HD cell model provides an important platform upon which further work is to be done to establish if such regulation plays any role in HD pathogenesis

    Abundant molecular oxygen in the coma of comet 67P/Churyumov–Gerasimenko

    No full text
    International audienceThe composition of the neutral gas comas of most comets is dominated by H2O,CO and CO2, typically comprising as much as 95 percent of the total gas density1. In addition, cometary comas have been found to contain a rich array of other molecules, includingsulfuric compounds and complex hydrocarbons. Molecular oxygen (O2), however, despite its detection on other icy bodies such as the moons of Jupiter and Saturn2,3, has remained undetected in cometary comas. Here we report in situ measurement of O2 in the coma of comet 67P/Churyumov–Gerasimenko, with local abundances ranging from one per cent to ten per cent relative to H2O and with a mean value of 3.8060.85 per cent. Our observations indicate that the O2/H2O ratio is isotropic in the coma and does not change systematically with heliocentric distance. This suggests that primordial O2 was incorporated into the nucleus during the comet’s formation, which is unexpected given the low upper limits fromremote sensing observations4. Current Solar System formation models do not predict conditions that would allow this to occur
    corecore