8 research outputs found

    Arrhythmia detection using deep convolutional neural network with long duration ECG signals

    No full text
    This article presents a new deep learning approach for cardiac arrhythmia (17 classes) detection based on long-duration electrocardiography (ECG) signal analysis. Cardiovascular disease prevention is one of the most important tasks of any health care system as about 50 million people are at risk of heart disease in the world. Although automatic analysis of ECG signal is very popular, current methods are not satisfactory. The goal of our research was to design a new method based on deep learning to efficiently and quickly classify cardiac arrhythmias. Described research are based on 1000 ECG signal fragments from the MIT - BIH Arrhythmia database for one lead (MLII) from 45 persons. Approach based on the analysis of 10-s ECG signal fragments (not a single QRS complex) is applied (on average, 13 times less classifications/analysis). A complete end-to-end structure was designed instead of the hand-crafted feature extraction and selection used in traditional methods. Our main contribution is to design a new 1D-Convolutional Neural Network model (1D-CNN). The proposed method is 1) efficient, 2) fast (real-time classification) 3) non-complex and 4) simple to use (combined feature extraction and selection, and classification in one stage). Deep 1D-CNN achieved a recognition overall accuracy of 17 cardiac arrhythmia disorders (classes) at a level of 91.33% and classification time per single sample of 0.015 s. Compared to the current research, our results are one of the best results to date, and our solution can be implemented in mobile devices and cloud computing

    1D-CADCapsNet: One dimensional deep capsule networks for coronary artery disease detection using ECG signals

    No full text
    PURPOSE: Cardiovascular disease (CVD) is a leading cause of death globally. Electrocardiogram (ECG), which records the electrical activity of the heart, has been used for the diagnosis of CVD. The automated and robust detection of CVD from ECG signals plays a significant role for early and accurate clinical diagnosis. The purpose of this study is to provide automated detection of coronary artery disease (CAD) from ECG signals using capsule networks (CapsNet). METHODS: Deep learning-based approaches have become increasingly popular in computer aided diagnosis systems. Capsule networks are one of the new promising approaches in the field of deep learning. In this study, we used 1D version of CapsNet for the automated detection of coronary artery disease (CAD) on two second (95,300) and five second-long (38,120) ECG segments. These segments are obtained from 40 normal and 7 CAD subjects. In the experimental studies, 5-fold cross validation technique is employed to evaluate performance of the model. RESULTS: The proposed model, which is named as 1D-CADCapsNet, yielded a promising 5-fold diagnosis accuracy of 99.44% and 98.62% for two- and five-second ECG signal groups, respectively. We have obtained the highest performance results using 2 s ECG segment than the state-of-art studies reported in the literature. CONCLUSIONS: 1D-CADCapsNet model automatically learns the pertinent representations from raw ECG data without using any hand-crafted technique and can be used as a fast and accurate diagnostic tool to help cardiologists

    A new approach for arrhythmia classification using deep coded features and LSTM networks

    No full text
    BACKGROUND AND OBJECTIVE: For diagnosis of arrhythmic heart problems, electrocardiogram (ECG) signals should be recorded and monitored. The long-term signal records obtained are analyzed by expert cardiologists. Devices such as the Holter monitor have limited hardware capabilities. For improved diagnostic capacity, it would be helpful to detect arrhythmic signals automatically. In this study, a novel approach is presented as a candidate solution for these issues. METHODS: A convolutional auto-encoder (CAE) based nonlinear compression structure is implemented to reduce the signal size of arrhythmic beats. Long-short term memory (LSTM) classifiers are employed to automatically recognize arrhythmias using ECG features, which are deeply coded with the CAE network. RESULTS: Based upon the coded ECG signals, both storage requirement and classification time were considerably reduced. In experimental studies conducted with the MIT-BIH arrhythmia database, ECG signals were compressed by an average 0.70% percentage root mean square difference (PRD) rate, and an accuracy of over 99.0% was observed. CONCLUSIONS: One of the significant contributions of this study is that the proposed approach can significantly reduce time duration when using LSTM networks for data analysis. Thus, a novel and effective approach was proposed for both ECG signal compression, and their high-performance automatic recognition, with very low computational cost

    Linear and non-linear analysis of cardiac health in diabetic subjects

    No full text
    Diabetes is a chronic disease characterized by hyperglycaemia, which leads to specific long-term complications: retinopathy, neuropathy, nephropathy and cardiomyopathy. Analysis of cardiac health using heart rate variation (HRV) has become a popular method to assess the activities of the autonomic nervous system (ANS). It is beneficial in the assessment of cardiac abnormalities, because of its ability to capture fast fluctuations that may be an indication of sympathetic and vagal activity. This paper documents work on the analysis of both normal and diabetic heart rate signals using time domain, frequency domain and nonlinear techniques. The study is based on data from 15 patients with diabetes and 15 healthy volunteers. Our results show that non-linear analysis of HRV is superior compared to time and frequency methods. Non-linear parameters namely,correlation dimension (CD), approximate entropy (ApEn), sample entropy (SampEn) and recurrence plot properties (REC and DET), are clinically significan

    Hybrid particle swarm optimization for rule discovery in the diagnosis of coronary artery disease

    No full text
    Background: Coronary artery disease (CAD) is one of the major and important causes of mortality worldwide. The knowledge about the risk factors which increases the probability of developing CAD can help to understand the disease better and also its treatment. Nowadays, many computer-aided approaches have been used for the prediction and diagnosis of diseases. The swarm intelligence algorithms like particle swarm optimization (PSO) have demonstrated great performance in solving different optimization problems. As rule discovery can be modeled as an optimization problem, it can be mapped to an optimization problem and solved by means of an evolutionary algorithm like PSO. Methods: An approach for discovering classification rules of CAD is proposed. The work is based on the real-world CAD dataset and aims at the detection of this disease by producing the accurate and effective rules. An approach based on a hybrid binary-real PSO algorithm is proposed which includes the combination of binary and realvalued encoding of a particle and a different approach for calculating the velocity of particles. The rules were developed from randomly generated particles which take random values in the range of each attribute in the rule. Two different feature selection approaches based on multi-objective evolutionary search and PSO were applied on the dataset and the most relevant features were selected by the algorithms. Results: The accuracy of two different rule sets were evaluated. The rule set with 11 features obtained more accurate results than the rule set with 13 features. Our results show that the proposed approach has the ability to produce effective rules with highest accuracy for the detection of CAD
    corecore