34 research outputs found
Single Spin Asymmetry in Polarized Proton-Proton Elastic Scattering at GeV
We report a high precision measurement of the transverse single spin
asymmetry at the center of mass energy GeV in elastic
proton-proton scattering by the STAR experiment at RHIC. The was measured
in the four-momentum transfer squared range \GeVcSq, the region of a significant interference between the
electromagnetic and hadronic scattering amplitudes. The measured values of
and its -dependence are consistent with a vanishing hadronic spin-flip
amplitude, thus providing strong constraints on the ratio of the single
spin-flip to the non-flip amplitudes. Since the hadronic amplitude is dominated
by the Pomeron amplitude at this , we conclude that this measurement
addresses the question about the presence of a hadronic spin flip due to the
Pomeron exchange in polarized proton-proton elastic scattering.Comment: 12 pages, 6 figure
J/ψ polarization in p+p collisions at s=200 GeV in STAR
AbstractWe report on a polarization measurement of inclusive J/ψ mesons in the di-electron decay channel at mid-rapidity at 2<pT<6 GeV/c in p+p collisions at s=200 GeV. Data were taken with the STAR detector at RHIC. The J/ψ polarization measurement should help to distinguish between different models of the J/ψ production mechanism since they predict different pT dependences of the J/ψ polarization. In this analysis, J/ψ polarization is studied in the helicity frame. The polarization parameter λθ measured at RHIC becomes smaller towards high pT, indicating more longitudinal J/ψ polarization as pT increases. The result is compared with predictions of presently available models
Measurement Of Charge Multiplicity Asymmetry Correlations In High-energy Nucleus-nucleus Collisions At Snn =200 Gev
A study is reported of the same- and opposite-sign charge-dependent azimuthal correlations with respect to the event plane in Au+Au collisions at sNN=200 GeV. The charge multiplicity asymmetries between the up/down and left/right hemispheres relative to the event plane are utilized. The contributions from statistical fluctuations and detector effects were subtracted from the (co-)variance of the observed charge multiplicity asymmetries. In the mid- to most-central collisions, the same- (opposite-) sign pairs are preferentially emitted in back-to-back (aligned on the same-side) directions. The charge separation across the event plane, measured by the difference, Δ, between the like- and unlike-sign up/down-left/right correlations, is largest near the event plane. The difference is found to be proportional to the event-by-event final-state particle ellipticity (via the observed second-order harmonic v2obs), where Δ=[1.3±1.4(stat)-1.0+4.0(syst)]×10- 5+[3.2±0.2(stat)-0.3+0.4(syst)]×10-3v2obs for 20-40% Au+Au collisions. The implications for the proposed chiral magnetic effect are discussed. © 2014 American Physical Society.894NRF-2012004024; National Research FoundationArsene, I., (2005) Nucl. Phys. A, 757, p. 1. , (BRAHMS Collaboration),. NUPABL 0375-9474 10.1016/j.nuclphysa.2005.02.130Back, B.B., (2005) Nucl. Phys. A, 757, p. 28. , (PHOBOS Collaboration),. NUPABL 0375-9474 10.1016/j.nuclphysa.2005.03.084Adams, J., (2005) Nucl. Phys. A, 757, p. 102. , (STAR Collaboration),. NUPABL 0375-9474 10.1016/j.nuclphysa.2005.03.085Adcox, K., (2005) Nucl. Phys. A, 757, p. 184. , (PHENIX Collaboration),. NUPABL 0375-9474 10.1016/j.nuclphysa.2005.03.086Lee, T.D., (1973) Phys. Rev. D, 8, p. 1226. , 0556-2821 10.1103/PhysRevD.8.1226Lee, T.D., Wick, G.C., (1974) Phys. Rev. D, 9, p. 2291. , 0556-2821 10.1103/PhysRevD.9.2291Morley, P.D., Schmidt, I.A., (1985) Z. Phys. C, 26, p. 627. , ZPCFD2 0170-9739 10.1007/BF01551807Kharzeev, D., Pisarski, R.D., Tytgat, M.H.G., (1998) Phys. Rev. Lett., 81, p. 512. , PRLTAO 0031-9007 10.1103/PhysRevLett.81.512Kharzeev, D., (2006) Phys. Lett. B, 633, p. 260. , PYLBAJ 0370-2693 10.1016/j.physletb.2005.11.075Kharzeev, D., Zhitnitsky, A., (2007) Nucl. Phys. A, 797, p. 67. , NUPABL 0375-9474 10.1016/j.nuclphysa.2007.10.001Fukushima, K., Kharzeev, D.E., Warringa, H.J., (2008) Phys. Rev. D, 78, p. 074033. , PRVDAQ 1550-7998 10.1103/PhysRevD.78.074033Kharzeev, D.E., McLerran, L.D., Warringa, H.J., (2008) Nucl. Phys. A, 803, p. 227. , NUPABL 0375-9474 10.1016/j.nuclphysa.2008.02.298Voloshin, S.A., (2004) Phys. Rev. C, 70, p. 057901. , PRVCAN 0556-2813 10.1103/PhysRevC.70.057901Abelev, B.I., (2009) Phys. Rev. Lett., 103, p. 251601. , (STAR Collaboration),. PRLTAO 0031-9007 10.1103/PhysRevLett.103.251601Abelev, B.I., (2010) Phys. Rev. C, 81, p. 054908. , (STAR Collaboration),. PRVCAN 0556-2813 10.1103/PhysRevC.81.054908Abelev, B., (2013) Phys. Rev. Lett., 110, p. 012301. , (ALICE Collaboration),. PRLTAO 0031-9007 10.1103/PhysRevLett.110.012301Wang, Q., (2012), http://drupal.star.bnl.gov/STAR/theses/phd/quanwang, Ph.D. thesis, Purdue University, arXiv:1205.4638Ackermann, K.H., (2003) Nucl. Instrum. Methods A, 499, p. 624. , (STAR Collaboration),. NIMAER 0168-9002 10.1016/S0168-9002(02)01960-5Bieser, F.S., (2003) Nucl. Instrum. Methods A, 499, p. 766. , (STAR Collaboration),. NIMAER 0168-9002 10.1016/S0168-9002(02)01974-5Adler, C., (2003) Nucl. Instrum. Methods A, 499, p. 433. , NIMAER 0168-9002 10.1016/j.nima.2003.08.112Adams, J., (2004) Phys. Rev. Lett., 92, p. 112301. , (STAR Collaboration),. PRLTAO 0031-9007 10.1103/PhysRevLett.92.112301Abelev, B.I., (2009) Phys. Rev. C, 79, p. 034909. , (STAR Collaboration),. PRVCAN 0556-2813 10.1103/PhysRevC.79.034909Ackermann, K.H., (1999) Nucl. Phys. A, 661, p. 681. , (STAR Collaboration),. NUPABL 0375-9474 10.1016/S0375-9474(99)85117-3Anderson, M., (2003) Nucl. Instrum. Methods A, 499, p. 659. , NIMAER 0168-9002 10.1016/S0168-9002(02)01964-2Poskanzer, A.M., Voloshin, S.A., (1998) Phys. Rev. C, 58, p. 1671. , PRVCAN 0556-2813 10.1103/PhysRevC.58.1671Wang, G., (2005), http://drupal.star.bnl.gov/STAR/theses/ph-d/gang-wang, Ph.D. thesis, UCLAAdamczyk, L., (2012) Phys. Rev. Lett., 108, p. 202301. , (STAR Collaboration),. PRLTAO 0031-9007 10.1103/PhysRevLett.108.202301Wang, F., (2010) Phys. Rev. C, 81, p. 064902. , PRVCAN 0556-2813 10.1103/PhysRevC.81.064902Pratt, S., Schlichting, S., Gavin, S., (2011) Phys. Rev. C, 84, p. 024909. , PRVCAN 0556-2813 10.1103/PhysRevC.84.024909Adams, J., (2005) Phys. Rev. Lett., 95, p. 152301. , (STAR Collaboration),. PRLTAO 0031-9007 10.1103/PhysRevLett.95.152301Aggarwal, M.M., (2010) Phys. Rev. C, 82, p. 024912. , (STAR collaboration),. PRVCAN 0556-2813 10.1103/PhysRevC.82.024912Abelev, B.I., (2009) Phys. Rev. Lett., 102, p. 052302. , (STAR Collaboration),. PRLTAO 0031-9007 10.1103/PhysRevLett.102.052302Abelev, B.I., (2009) Phys. Rev. C, 80, p. 064912. , (STAR Collaboration),. PRVCAN 0556-2813 10.1103/PhysRevC.80.064912Abelev, B.I., (2010) Phys. Rev. Lett., 105, p. 022301. , (STAR Collaboration),. PRLTAO 0031-9007 10.1103/PhysRevLett.105.022301Agakishiev, H., (STAR Collaboration), arXiv:1010.0690Petersen, H., Renk, T., Bass, S.A., (2011) Phys. Rev. C, 83, p. 014916. , PRVCAN 0556-2813 10.1103/PhysRevC.83.014916Adamczyk, L., (2013) Phys. Rev. C, 88, p. 064911. , (STAR Collaboration),. 10.1103/PhysRevC.88.064911Asakawa, M., Majumder, A., Müller, B., (2010) Phys. Rev. C, 81, p. 064912. , PRVCAN 0556-2813 10.1103/PhysRevC.81.064912Bzdak, A., Koch, V., Liao, J., (2010) Phys. Rev. C, 81, pp. 031901R. , PRVCAN 0556-2813 10.1103/PhysRevC.81.031901Liao, J., Koch, V., Bzdak, A., (2010) Phys. Rev. C, 82, p. 054902. , PRVCAN 0556-2813 10.1103/PhysRevC.82.054902Ma, G.-L., Zhang, B., (2011) Phys. Lett. B, 700, p. 39. , PYLBAJ 0370-2693 10.1016/j.physletb.2011.04.057Voloshin, S.A., (2010) Phys. Rev. Lett., 105, p. 172301. , PRLTAO 0031-9007 10.1103/PhysRevLett.105.17230
Fluctuations Of Charge Separation Perpendicular To The Event Plane And Local Parity Violation In S Nn = 200 Gev Au + Au Collisions At The Bnl Relativistic Heavy Ion Collider
Previous experimental results based on data (∼15×106 events) collected by the STAR detector at the BNL Relativistic Heavy Ion Collider suggest event-by-event charge-separation fluctuations perpendicular to the event plane in noncentral heavy-ion collisions. Here we present the correlator previously used split into its two component parts to reveal correlations parallel and perpendicular to the event plane. The results are from a high-statistics 200-GeV Au + Au collisions data set (57×106 events) collected by the STAR experiment. We explicitly count units of charge separation from which we find clear evidence for more charge-separation fluctuations perpendicular than parallel to the event plane. We also employ a modified correlator to study the possible P-even background in same- and opposite-charge correlations, and find that the P-even background may largely be explained by momentum conservation and collective motion. © 2013 American Physical Society.886NRF-2012004024; National Research FoundationLee, T.D., Yang, C.N., (1956) Phys. Rev., 104. , 1, 254. 0031-899X PHRVAO 10.1103/PhysRev.104.254Vafa, C., Witten, E., (1984) Phys. Rev. Lett., 53. , 2, 535. 0031-9007 PRLTAO 10.1103/PhysRevLett.53.535Lee, T.D., (1973) Phys. Rev. D, 8. , 3, 1226. 0556-2821 10.1103/PhysRevD.8.1226Lee, T.D., Wick, G.C., (1974) Phys. Rev. D, 9. , 4, 2291. 0556-2821 10.1103/PhysRevD.9.2291Kharzeev, D., Parity violation in hot QCD: Why it can happen, and how to look for it (2006) Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 633 (2-3), pp. 260-264. , DOI 10.1016/j.physletb.2005.11.075, PII S0370269305017430Kharzeev, D., Zhitnitsky, A., (2007) Nucl. Phys. A, 797. , 6, 67. 0375-9474 NUPABL 10.1016/j.nuclphysa.2007.10.001Kharzeev, D., McLerran, L.D., Warringa, H.J., (2008) Nucl. Phys. A, 803. , 7, 227. 0375-9474 NUPABL 10.1016/j.nuclphysa.2008.02.298Fukushima, K., Kharzeev, D.E., Warringa, H.J., (2008) Phys. Rev. D, 78. , 8, 074033. 1550-7998 PRVDAQ 10.1103/PhysRevD.78.074033Abelev, B.I., (2009) Phys. Rev. Lett., 103. , 9 (STAR Collaboration), 251601. 0031-9007 PRLTAO 10.1103/PhysRevLett.103. 251601Abelev, B.I., (2010) Phys. Rev. C, 81. , 10 (STAR Collaboration), 054908. 0556-2813 PRVCAN 10.1103/PhysRevC.81. 054908Abelev, B.I., (2013) Phys. Rev. Lett., 110. , 11 (ALICE Collaboration), 012301. 0031-9007 PRLTAO 10.1103/PhysRevLett. 110.012301Ackermann, K.H., Adams, N., Adler, C., Ahammed, Z., Ahmad, S., Allgower, C., Amonett, J., Harris, J.W., STAR detector overview (2003) Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 499 (2-3), pp. 624-632. , DOI 10.1016/S0168-9002(02)01960-5Adams, J., Aggarwal, M.M., Ahammed, Z., Amonett, J., Anderson, B.D., Arkhipkin, D., Averichev, G.S., Bai, Y., Directed flow in Au+Au collisions at sNN=62.4 GeV (2006) Physical Review C - Nuclear Physics, 73 (3), pp. 1-7. , http://oai.aps.org/oai?verb=GetRecord&Identifier=oai:aps.org: PhysRevC.73.034903&metadataPrefix=oai_apsmeta_2, DOI 10.1103/PhysRevC.73.034903, 034903Adamczyk, L., (2012) Phys. Rev. Lett., 108. , 14 (STAR Collaboration), 202301. 0031-9007 PRLTAO 10.1103/PhysRevLett. 108.202301Voloshin, S.A., Parity violation in hot QCD: How to detect it (2004) Physical Review C - Nuclear Physics, 70 (5), pp. 0579011-0579012. , DOI 10.1103/PhysRevC.70.057901, 057901Poskanzer, A.M., Voloshin, S.A., Methods for analyzing anisotropic flow in relativistic nuclear collisions (1998) Physical Review C - Nuclear Physics, 58 (3), pp. 1671-1678. , DOI 10.1103/PhysRevC.58.1671Ollitrault, J.-Y., Poskanzer, A.M., Voloshin, S.A., (2009) Phys. Rev. C, 80. , 17, 014904. 0556-2813 PRVCAN 10.1103/PhysRevC.80.014904Pratt, S., Schlichting, S., Gavin, S., (2011) Phys. Rev. C, 84. , 18, 024909. 0556-2813 PRVCAN 10.1103/PhysRevC.84.024909Schlichting, S., Pratt, S., (2011) Phys. Rev. C, 83. , 19, 014913. 0556-2813 PRVCAN 10.1103/PhysRevC.83.014913Selyuzhenkov, I., Voloshin, S., (2008) Phys. Rev. C, 77. , 20, 034904. 0556-2813 PRVCAN 10.1103/PhysRevC.77.034904Kisiel, A., (2006) Comput. Phys. Commun., 174. , 21, 669. 0010-4655 CPHCBZ 10.1016/j.cpc.2005.11.010Bzdak, A., Koch, V., Liao, J., (2011) Phys. Rev. C, 83. , 22, 014905. 0556-2813 PRVCAN 10.1103/PhysRevC.83.014905Adams, J., Aggarwal, M.M., Ahammed, Z., Amonett, J., Anderson, B.D., Arkhipkin, D., Averichev, G.S., Grebenyuk, O., Azimuthal anisotropy in Au+Au collisions at sNN=200GeV (2005) Physical Review C - Nuclear Physics, 72 (1), pp. 1-23. , http://oai.aps.org/oai/?verb=ListRecords&metadataPrefix= oai_apsmeta_2&set=journal:PRC:72, DOI 10.1103/PhysRevC.72.014904, 014904Ray, R.L., Longacre, R.S., 24, arXiv:nucl-ex/0008009 and private communicationKopylov, G.I., Podgoretsky, M.I., Kopylov, G.I., Podgoretsky, M.I., (1972) Sov. J. Nucl. Phys., 15. , 25a, 219 ()25b, Phys. Lett. B. 50, 472 (1974) 0370-2693 PYLBAJ 10.1016/0370-2693(74)90263-925c, Sov. J. Part. Nucl. 20, 266 (1989)Goldhaber, G., Goldhaber, S., Lee, W., Pais, A., (1960) Phys. Rev., 120. , 26, 325. 0031-899X PHRVAO 10.1103/PhysRev.120.32
Chronic relapsing inflammatory optic neuropathy (CRION)
We describe the clinical characteristics and early natural history of a form of inflammatory optic neuropathy which is frequently bilateral and often painful, and is characterized by relapses and remissions. MRI scans of the brain are normal and those of the optic nerves often, but not always, show high signal abnormalities which enhance. The symptoms and signs respond well to corticosteroid treatment, although long-term immuno suppression is often necessary. The syndrome behaves in a way which is typical of the condition known as granulomatous optic neuropathy, but during a median follow-up of 8 (2-26) years in no case has evidence for systemic sarcoidosis been identified. We suggest that the disorder be named chronic relapsing inflammatory optic neuropathy (CRION
The roots of the wind of M82
4 figures. Submitted to PRL see paper for full list authorsSTAR's measurements of directed flow () around midrapidity for , K, K, and in Au + Au collisions at \sqrtsNN = 200 GeV are presented. A negative slope is observed for most of produced particles (, K, K and ). The proton slope is found to be much closer to zero compared to antiprotons. A sizable difference is seen between of protons and antiprotons in 5-30% central collisions. The excitation function is presented. Comparisons to model calculations (RQMD, UrQMD, AMPT, QGSM with parton recombination, and a hydrodynamics model with a tilted source) are made. Anti-flow alone cannot explain the centrality dependence of the difference between the slopes of protons and antiprotons
Dielectron Mass Spectra From Au+au Collisions At Snn =200 Gev
We report the STAR measurements of dielectron (e+e-) production at midrapidity (|yee|<1) in Au+Au collisions at sNN=200GeV. The measurements are evaluated in different invariant mass regions with a focus on 0.30-0.76 (ρ-like), 0.76-0.80 (ω-like), and 0.98-1.05 (φ-like) GeV/c2. The spectrum in the ω-like and φ-like regions can be well described by the hadronic cocktail simulation. In the ρ-like region, however, the vacuum ρ spectral function cannot describe the shape of the dielectron excess. In this range, an enhancement of 1.77±0.11(stat)±0.24(syst)±0. 33(cocktail) is determined with respect to the hadronic cocktail simulation that excludes the ρ meson. The excess yield in the ρ-like region increases with the number of collision participants faster than the ω and φ yields. Theoretical models with broadened ρ contributions through interactions with constituents in the hot QCD medium provide a consistent description of the dilepton mass spectra for the measurement presented here and the earlier data at the Super Proton Synchrotron energies. © 2014 American Physical Society.1132DOE; National Science Foundation; NSF; National Science Foundation; NSFC; National Science FoundationAdams, J., Aggarwal, M.M., Ahammed, Z., Amonett, J., Anderson, B.D., Arkhipkin, D., Averichev, G.S., Hallman, T.J., Experimental and theoretical challenges in the search for the quark-gluon plasma: The STAR Collaboration's critical assessment of the evidence from RHIC collisions (2005) Nuclear Physics A, 757 (1-2 SPEC. ISS.), pp. 102-183. , DOI 10.1016/j.nuclphysa.2005.03.085, PII S0375947405005294Adcox, K., Adler, S.S., Afanasiev, S., Aidala, C., Ajitanand, N.N., Akiba, Y., Al-Jamel, A., Zajc, W.A., Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: Experimental evaluation by the PHENIX Collaboration (2005) Nuclear Physics A, 757 (1-2 SPEC. ISS.), pp. 184-283. , DOI 10.1016/j.nuclphysa.2005.03.086, PII S0375947405005300Back, B.B., Baker, M.D., Ballintijn, M., Barton, D.S., Becker, B., Betts, R.R., Bickley, A.A., Zhang, J., The PHOBOS perspective on discoveries at RHIC (2005) Nuclear Physics A, 757 (1-2 SPEC. ISS.), pp. 28-101. , DOI 10.1016/j.nuclphysa.2005.03.084, PII S0375947405005282Arsene, I., Bearden, I.G., Beavis, D., Besliu, C., Budick, B., Boggild, H., Chasman, C., Zgura, I.S., Quark-gluon plasma and color glass condensate at RHIC? The perspective from the BRAHMS experiment (2005) Nuclear Physics A, 757 (1-2 SPEC. ISS.), pp. 1-27. , DOI 10.1016/j.nuclphysa.2005.02.130, PII S0375947405002770Shuryak, E., (1980) Phys. Rep., 61, p. 71. , PRPLCM 0370-1573 10.1016/0370-1573(80)90105-2Rapp, R., (2001) Phys. Rev. C, 63, p. 054907. , PRVCAN 0556-2813 10.1103/PhysRevC.63.054907Rapp, R., Wambach, J., (2000) Adv. Nucl. Phys., 25, p. 1. , 10.1007/0-306-47101-9-1Brown, G.E., Rho, M., (1996) Phys. Rep., 269, p. 333. , PRPLCM 0370-1573 10.1016/0370-1573(95)00067-4Rapp, R., Wambach, J., (1999) Eur. Phys. J. A, 6, p. 415. , EPJAFV 1434-6001 10.1007/s100500050364Porter, R.J., (1997) Phys. Rev. Lett., 79, p. 1229. , (DLS Collaboration),. PRLTAO 0031-9007 10.1103/PhysRevLett.79.1229Agakichiev, G., Agodi, C., Alvarez-Pol, H., Balanda, A., Bertini, D., Bielcik, J., Bellia, G., Bohmer, M., Dielectron production in C12+C12 collisions at 2AGeV with the HADES spectrometer (2007) Physical Review Letters, 98 (5), p. 052302. , http://oai.aps.org/oai?verb=GetRecord&Identifier=oai:aps.org: PhysRevLett.98.052302&metadataPrefix=oai_apsmeta_2, DOI 10.1103/PhysRevLett.98.052302Adamova, G., (2011) Phys. Rev. C, 84, p. 014902. , (HADES Collaboration),. PRVCAN 0556-2813 10.1103/PhysRevC.84.014902Angelis A L, S., (2000) Eur. Phys. J. C, 13, p. 433. , (HELIOS/3 Collaboration),. EPCFFB 1434-6044 10.1007/s100520050707Agakichiev, G., (2003) Phys. Rev. Lett., 91, p. 042301. , (CERES Collaboration), ()PRLTAO 0031-9007 10.1103/PhysRevLett.91.042301Agakichiev, G., Appelshauser, H., Bielcikova, J., Baur, R., Braun-Munzinger, P., Cherlin, A., Damjanovic, S., Yurevich, V., E+ e- -pair production in Pb-Au collisions at 158 GeV per nucleon (2005) European Physical Journal C, 41 (4), pp. 475-513. , DOI 10.1140/epjc/s2005-02272-3Arnaldi, R., Averbeck, R., Banicz, K., Castor, J., Chaurand, B., Cicalo, C., Colla, A., Wohri, H.K., First measurement of the spectral function in high-energy nuclear collisions (2006) Physical Review Letters, 96 (16), p. 162302. , http://oai.aps.org/oai?verb=GetRecord&Identifier=oai:aps.org: PhysRevLett.96.162302&metadataPrefix=oai_apsmeta_2, DOI 10.1103/PhysRevLett.96.162302Arnaldi, R., (2008) Phys. Rev. Lett., 100, p. 022302. , (NA60 Collaboration), ()PRLTAO 0031-9007 10.1103/PhysRevLett.100.022302Arnaldi, R., (2009) Eur. Phys. J. C, 59, p. 607. , (NA60 Collaboration),. EPCFFB 1434-6044 10.1140/epjc/s10052-008-0857-2Adare, A., (2010) Phys. Rev. C, 81, p. 034911. , (PHENIX Collaboration),. PRVCAN 0556-2813 10.1103/PhysRevC.81.034911Van Hees, H., Rapp, R., Comprehensive interpretation of thermal dileptons measured at the CERN super proton synchrotron (2006) Physical Review Letters, 97 (10), p. 102301. , http://oai.aps.org/oai?verb=GetRecord&Identifier=oai:aps.org: PhysRevLett.97.102301&metadataPrefix=oai_apsmeta_2, DOI 10.1103/PhysRevLett.97.102301Van Hees, H., Rapp, R., (2008) Nucl. Phys., A806, p. 339. , NUPBBO 0550-3213 10.1016/j.nuclphysa.2008.03.009Ruppert, J., Gale, C., Renk, T., Lichard, P., Kapusta, J.I., Low mass dimuons produced in relativistic nuclear collisions (2008) Physical Review Letters, 100 (16), p. 162301. , http://oai.aps.org/oai?verb=GetRecord&Identifier=oai:aps.org: PhysRevLett.100.162301&metadataPrefix=oai_apsmeta_2, DOI 10.1103/PhysRevLett.100.162301Renk, T., Ruppert, J., (2008) Phys. Rev. C, 77, p. 024907. , PRVCAN 0556-2813 10.1103/PhysRevC.77.024907Dusling, K., Teaney, D., Zahed, I., (2007) Phys. Rev. C, 75, p. 024908. , PRVCAN 0556-2813 10.1103/PhysRevC.75.024908Linnyk, O., Bratkovskaya, E.L., Ozvenchuk, V., Cassing, W., Ko, C.M., (2011) Phys. Rev. C, 84, p. 054917. , PRVCAN 0556-2813 10.1103/PhysRevC.84.054917Abelev, B.I., (2009) Phys. Rev. C, 79, p. 034909. , (STAR Collaboration),. PRVCAN 0556-2813 10.1103/PhysRevC.79.034909Anderson, M., Berkovitz, J., Betts, W., Bossingham, R., Bieser, F., Brown, R., Burks, M., Zhang, W., The STAR time projection chamber: A unique tool for studying high multiplicity events at RHIC (2003) Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 499 (2-3), pp. 659-678. , DOI 10.1016/S0168-9002(02)01964-2Llope, W.J., (2012) Nucl. Instrum. Methods Phys. Res., Sect. A, 661, pp. S110. , (for the STAR Collaboration),. NIMAER 0168-9002 10.1016/j.nima.2010.07. 086Shao, M., Barannikova, O., Dong, X., Fisyak, Y., Ruan, L., Sorensen, P., Xu, Z., (2006) Nucl. Instrum. Methods Phys. Res., Sect. A, 558, p. 419. , NIMAER 0168-9002 10.1016/j.nima.2005.11.251Adamczyk, L., (2012) Phys. Rev. C, 86, p. 024906. , (STAR Collaboration),. PRVCAN 0556-2813 10.1103/PhysRevC.86.024906http://wwwasdoc.web.cern.ch/wwwasdoc/geant_html3/geantall.html, geant 3.21, CERN program libraryZhao, J., (2013), https://drupal.star.bnl.gov/STAR/theses/phd-32, Ph.D. thesis, Shanghai Institute of Applied PhysicsTang, Z., Xu, Y., Ruan, L., Van Buren, G., Wang, F., Xu, Z., (2009) Phys. Rev. C, 79, p. 051901. , PRVCAN 0556-2813 10.1103/PhysRevC.79.051901Tang, Z.-B., Yi, L., Ruan, L.-J., Shao, M., Li, C., Chen, H.-F., Mohanty, B., Xu, Z.-B., (2013) Chin. Phys. Lett., 30, p. 031201. , CPLEEU 0256-307X 10.1088/0256-307X/30/3/031201Adams, J., (2004) Phys. Rev. Lett., 92, p. 112301. , (STAR Collaboration), ()PRLTAO 0031-9007 10.1103/PhysRevLett.92.112301Abelev, B.I., Aggarwal, M.M., Ahammed, Z., Anderson, B.D., Anderson, M., Arkhipkin, D., Averichev, G.S., Guertin, S.M., Identified baryon and meson distributions at large transverse momenta from Au+Au collisions at sNN=200a GeV (2006) Physical Review Letters, 97 (15), p. 152301. , http://oai.aps.org/oai?verb=GetRecord&Identifier=oai:aps.org: PhysRevLett.97.152301&metadataPrefix=oai_apsmeta_2, DOI 10.1103/PhysRevLett.97.152301Alder, S.S., (2003) Phys. Rev. Lett., 91, p. 072301. , (PHENIX Collaboration), ()PRLTAO 0031-9007 10.1103/PhysRevLett.91. 072301Adler, S.S., Afanasiev, S., Aidala, C., Ajitanand, N.N., Akiba, Y., Alexander, J., Amirikas, R., Hayano, R., Identified charged particle spectra and yields in Au+Au collisions at SNN=200 GeV (2004) Physical Review C - Nuclear Physics, 69 (3), pp. 0349091-03490932. , DOI 10.1103/PhysRevC.69.034909, 034909Adler, S.S., (2007) Phys. Rev. C, 75, p. 024909. , (PHENIX Collaboration),. PRVCAN 0556-2813 10.1103/PhysRevC.75.024909Adams, J., (2005) Phys. Lett. B, 612, p. 181. , (STAR Collaboration),. PYLBAJ 0370-2693 10.1016/j.physletb.2004.12.082Adare, A., Afanasiev, S., Aidala, C., Ajitanand, N.N., Akiba, Y., Al-Bataineh, H., Alexander, J., Al-Jamel, A., J/production versus centrality, transverse momentum, and rapidity in Au+Au collisions at s NN=200 GeV (2007) Physical Review Letters, 98 (23), p. 232301. , http://oai.aps.org/oai?verb=GetRecord&Identifier=oai:aps.org: PhysRevLett.98.232301&metadataPrefix=oai_apsmeta_2, DOI 10.1103/PhysRevLett.98.232301Sjostrand, T., Eden, P., Friberg, C., Lonnblad, L., Miu, G., Mrenna, S., Norrbin, E., High-energy-physics event generation with PYTHIA 6.1 (2001) Computer Physics Communications, 135 (2), pp. 238-259. , DOI 10.1016/S0010-4655(00)00236-8, PII S0010465500002368L. Adamczyk (STAR Collaboration), arXiv:1404.6185Rapp, R., Proc. Sci., 2013 (CPOD2013), p. 008Rapp, R., (private communication)Linnyk, O., Cassing, W., Manninen, J., Bratkovskaya, E.L., Ko, C.M., (2012) Phys. Rev. C, 85, p. 024910. , PRVCAN 0556-2813 10.1103/PhysRevC.85.024910Linnyk, O., (private communication)Cassing, W., Bratkovskaya, E.L., (2009) Nucl. Phys., A831, p. 215. , NUPBBO 0550-3213 10.1016/j.nuclphysa.2009.09.007Bratkovskaya, E.L., Cassing, W., Konchakovski, V.P., Linnyk, O., (2011) Nucl. Phys., A856, p. 162. , NUPHA7 0029-5582 10.1016/j.nuclphysa.2011.03.003Xu, H.J., Chen, H.F., Dong, X., Wang, Q., Zhang, Y.F., (2012) Phys. Rev. C, 85, p. 024906. , PRVCAN 0556-2813 10.1103/PhysRevC.85.024906Vujanovic, G., Young, C., Schenke, B., Jeon, S., Rapp, R., Gale, C., (2013) Nucl. Phys., A904, pp. 557c. , NUPBBO 0550-3213 10.1016/j.nuclphysa.2013.02.075Gujanovic, G., Young, C., Schenke, B., Rapp, R., Jeon, S., Gale, C., (2014) Phys. Rev. C, 89, p. 034904. , PRVCAN 0556-2813 10.1103/PhysRevC.89.034904Heinz, U., Lee, K.S., (1991) Phys. Lett. B, 259, p. 162. , PYLBAJ 0370-2693 10.1016/0370-2693(91)90152-GAdare, A., Afanasiev, S., Aidala, C., Ajitanand, N.N., Akiba, Y., Al-Bataineh, H., Alexander, J., Aphecetche, L., Energy loss and flow of heavy quarks in Au+Au collisions at sNN=200GeV (2007) Physical Review Letters, 98 (17), p. 172301. , http://oai.aps.org/oai?verb=GetRecord&Identifier=oai:aps.org: PhysRevLett.98.172301&metadataPrefix=oai_apsmeta_2, DOI 10.1103/PhysRevLett.98.17230