750 research outputs found

    Measuring hadron properties at finite temperature

    Get PDF
    We estimate the numbers and mass spectra of observed lepton and kaon pairs produced from ϕ\phi meson decays in the central rapidity region of an Au+Au collision at lab energy 11.6 GeV/nucleon. The following effects are considered: possible mass shifts, thermal broadening due to collisions with hadronic resonances, and superheating of the resonance gas. Changes in the dilepton mass spectrum may be seen, but changes in the dikaon spectrum are too small to be detectable.Comment: 9 pages (revtex), 3 figures (uuencoded postscript

    On the calculation of the topographic wetness index: evaluation of different methods based on field observations

    Get PDF
    The topographic wetness index (TWI, ln(<i>a</i>/tan<I>&beta;</I>)), which combines local upslope contributing area and slope, is commonly used to quantify topographic control on hydrological processes. Methods of computing this index differ primarily in the way the upslope contributing area is calculated. In this study we compared a number of calculation methods for TWI and evaluated them in terms of their correlation with the following measured variables: vascular plant species richness, soil pH, groundwater level, soil moisture, and a constructed wetness degree. The TWI was calculated by varying six parameters affecting the distribution of accumulated area among downslope cells and by varying the way the slope was calculated. All possible combinations of these parameters were calculated for two separate boreal forest sites in northern Sweden. We did not find a calculation method that performed best for all measured variables; rather the best methods seemed to be variable and site specific. However, we were able to identify some general characteristics of the best methods for different groups of measured variables. The results provide guiding principles for choosing the best method for estimating species richness, soil pH, groundwater level, and soil moisture by the TWI derived from digital elevation models

    Hadron widths in mixed-phase matter

    Get PDF
    We derive classically an expression for a hadron width in a two-phase region of hadron gas and quark-gluon plasma (QGP). The presence of QGP gives hadrons larger widths than they would have in a pure hadron gas. We find that the ϕ\phi width observed in a central Au+Au collision at s=200\sqrt{s}=200 GeV/nucleon is a few MeV greater than the width in a pure hadron gas. The part of observed hadron widths due to QGP is approximately proportional to (dN/dy)1/3(dN/dy)^{-1/3}.Comment: 8 pages, latex, no figures, KSUCNR-002-9

    GALEX, Optical and IR Light Curves of MQ Dra: UV Excesses at Low Accretion Rates

    Full text link
    Ultraviolet light curves constructed from NUV and FUV detectors on GALEX reveal large amplitude variations during the orbital period of the Low Accretion Rate Polar MQ Dra (SDSSJ1553+55). This unexpected variation from a UV source is similar to that seen and discussed in the Polar EF Eri during its low state of accretion, even though the accretion rate in MQ Dra is an order of magnitude lower than even the low state of EF Eri. The similarity in phasing of the UV and optical light curves in MQ Dra imply a similar location for the source of light. We explore the possibilities of hot spots and cyclotron emission with simple models fit to the UV, optical and IR light curves of MQ Dra. To match the GALEX light curves with a single temperature circular hot spot requires different sizes of spots for the NUV and FUV, while a cyclotron model that can produce the optical harmonics with a magnetic field near 60 MG requires multipoles with fields > 200 MG to match the UV fluxes.Comment: accepted for ApJ; 15 pages, 7 tables, 8 fig

    Unravelling abiotic and biotic controls on the seasonal water balance using data-driven dimensionless diagnostics

    Get PDF
    The baffling diversity of runoff generation processes, alongside our sketchy understanding of how physiographic characteristics control fundamental hydrological functions of water collection, storage, and release, continue to pose major research challenges in catchment hydrology. Here, we propose innovative data-driven diagnostic signatures for overcoming the prevailing status quo in catchment inter-comparison. More specifically, we present dimensionless double mass curves (dDMC) which allow inference of information on runoff generation and the water balance at the seasonal and annual timescales. By separating the vegetation and winter periods, dDMC furthermore provide information on the role of biotic and abiotic controls in seasonal runoff formation. A key aspect we address in this paper is the derivation of dimensionless expressions of fluxes which ensure the comparability of the signatures in space and time. We achieve this by using the limiting factors of a hydrological process as a scaling reference. We show that different references result in different diagnostics. As such we define two kinds of dDMC which allow us to derive seasonal runoff coefficients and to characterize dimensionless streamflow release as a function of the potential renewal rate of the soil storage. We expect these signatures for storage controlled seasonal runoff formation to remain invariant, as long as the ratios of release over supply and supply over storage capacity develop similarly in different catchments. We test the proposed methods by applying them to an operational data set comprising 22 catchments (12–166 km2) from different environments in southern Germany and hydrometeorological data from 4 hydrological years. The diagnostics are used to compare the sites and to reveal the dominant controls on runoff formation. The key findings are that dDMC are meaningful signatures for catchment runoff formation at the seasonal to annual scale and that the type of scaling strongly influences the diagnostic potential of the dDMC. Adding discrimination between growing season and winter period was of fundamental importance and easy to implement by means of a temperature-index model. More specifically, temperature aggregates explain over 70 % of the variability of the seasonal summer runoff coefficients. The results also show that the soil topographic index, i.e. the product of topographic gradient and saturated hydraulic conductivity, is significantly correlated with winter runoff coefficients, whereas the topographic gradient and the hydraulic conductivity alone are not. We conclude that proxies for gradients and resistances should be interpreted as a pair. Lastly, the dDMC concept reveals memory effects between summer and winter runoff regimes that are not relevant in spring between the transition from winter to summer

    Unravelling abiotic and biotic controls on the seasonal water balance using data-driven dimensionless diagnostics

    Get PDF
    The baffling diversity of runoff generation processes, alongside our sketchy understanding of how physiographic characteristics control fundamental hydrological functions of water collection, storage, and release, continue to pose major research challenges in catchment hydrology. Here, we propose innovative data-driven diagnostic signatures for overcoming the prevailing status quo in catchment inter-comparison. More specifically, we present dimensionless double mass curves (dDMC) which allow inference of information on runoff generation and the water balance at the seasonal and annual timescales. By separating the vegetation and winter periods, dDMC furthermore provide information on the role of biotic and abiotic controls in seasonal runoff formation. A key aspect we address in this paper is the derivation of dimensionless expressions of fluxes which ensure the comparability of the signatures in space and time. We achieve this by using the limiting factors of a hydrological process as a scaling reference. We show that different references result in different diagnostics. As such we define two kinds of dDMC which allow us to derive seasonal runoff coefficients and to characterize dimensionless streamflow release as a function of the potential renewal rate of the soil storage. We expect these signatures for storage controlled seasonal runoff formation to remain invariant, as long as the ratios of release over supply and supply over storage capacity develop similarly in different catchments. We test the proposed methods by applying them to an operational data set comprising 22 catchments (12–166 km2) from different environments in southern Germany and hydrometeorological data from 4 hydrological years. The diagnostics are used to compare the sites and to reveal the dominant controls on runoff formation. The key findings are that dDMC are meaningful signatures for catchment runoff formation at the seasonal to annual scale and that the type of scaling strongly influences the diagnostic potential of the dDMC. Adding discrimination between growing season and winter period was of fundamental importance and easy to implement by means of a temperature-index model. More specifically, temperature aggregates explain over 70 % of the variability of the seasonal summer runoff coefficients. The results also show that the soil topographic index, i.e. the product of topographic gradient and saturated hydraulic conductivity, is significantly correlated with winter runoff coefficients, whereas the topographic gradient and the hydraulic conductivity alone are not. We conclude that proxies for gradients and resistances should be interpreted as a pair. Lastly, the dDMC concept reveals memory effects between summer and winter runoff regimes that are not relevant in spring between the transition from winter to summer

    Deterministic delivery of externally cold and precisely positioned single molecular ions

    Full text link
    We present the preparation and deterministic delivery of a selectable number of externally cold molecular ions. A laser cooled ensemble of Mg^+ ions subsequently confined in several linear Paul traps inter-connected via a quadrupole guide serves as a cold bath for a single or up to a few hundred molecular ions. Sympathetic cooling embeds the molecular ions in the crystalline structure. MgH^+ ions, that serve as a model system for a large variety of other possible molecular ions, are cooled down close to the Doppler limit and are positioned with an accuracy of one micrometer. After the production process, severely compromising the vacuum conditions, the molecular ion is efficiently transfered into nearly background-free environment. The transfer of a molecular ion between different traps as well as the control of the molecular ions in the traps is demonstrated. Schemes, optimized for the transfer of a specific number of ions, are realized and their efficiencies are evaluated. This versatile source applicable for broad charge-to-mass ratios of externally cold and precisely positioned molecular ions can serve as a container-free target preparation device well suited for diffraction or spectroscopic measurements on individual molecular ions at high repetition rates (kHz).Comment: 11 pages, 8 figure

    ASASSN-15oi: A Rapidly Evolving, Luminous Tidal Disruption Event at 216 Mpc

    Get PDF
    We present ground-based and Swift photometric and spectroscopic observations of the tidal disruption event (TDE) ASASSN-15oi, discovered at the center of 2MASX J20390918-3045201 (d216d\simeq216 Mpc) by the All-Sky Automated Survey for SuperNovae (ASAS-SN). The source peaked at a bolometric luminosity of L1.9×1044L\simeq1.9\times10^{44} ergs s1^{-1} and radiated a total energy of E5.0×1050E\simeq5.0\times10^{50} ergs over the 3.5\sim3.5 months of observations. The early optical/UV emission of the source can be fit by a blackbody with temperature increasing from T2×104T\sim2\times10^4 K to T6×104T\sim6\times10^4 K while the luminosity declines from L1.9×1044L\simeq1.9\times10^{44} ergs s1^{-1} to L2.8×1043L\simeq2.8\times10^{43} ergs s1^{-1}, requiring the photosphere to be shrinking rapidly. The optical/UV luminosity decline is broadly consistent with an exponential decline, Let/t0L\propto e^{-t/t_0}, with t035t_0\simeq35 days. ASASSN-15oi also exhibits roughly constant soft X-ray emission that is significantly weaker than the optical/UV emission. Spectra of the source show broad helium emission lines and strong blue continuum emission in early epochs, although these features fade rapidly and are not present 3\sim3 months after discovery. The early spectroscopic features and color evolution of ASASSN-15oi are consistent with a TDE, but the rapid spectral evolution is unique among optically-selected TDEs

    The Q2Q^2-dependence of the generalised Gerasimov-Drell-Hearn integral for the deuteron, proton and neutron

    Full text link
    The Gerasimov-Drell-Hearn (GDH) sum rule connects the anomalous contribution to the magnetic moment of the target nucleus with an energy-weighted integral of the difference of the helicity-dependent photoabsorption cross sections. The data collected by HERMES with a deuterium target are presented together with a re-analysis of previous measurements on the proton. This provides a measurement of the generalised GDH integral covering simultaneously the nucleon-resonance and the deep inelastic scattering regions. The contribution of the nucleon-resonance region is seen to decrease rapidly with increasing Q2Q^2. The DIS contribution is sizeable over the full measured range, even down to the lowest measured Q2Q^2. As expected, at higher Q2Q^2 the data are found to be in agreement with previous measurements of the first moment of g1g_1. From data on the deuteron and proton, the GDH integral for the neutron has been derived and the proton--neutron difference evaluated. This difference is found to satisfy the fundamental Bjorken sum rule at Q2=5Q^2 = 5 GeV2^2.Comment: 12 pages, 10 figure
    corecore