255 research outputs found
Initial activation of EpCAM cleavage via cell-to-cell contact
<p>Abstract</p> <p>Background</p> <p>Epithelial cell adhesion molecule EpCAM is a transmembrane glycoprotein, which is frequently over-expressed in simple epithelia, progenitors, embryonic and tissue stem cells, carcinoma and cancer-initiating cells. Besides functioning as a homophilic adhesion protein, EpCAM is an oncogenic receptor that requires regulated intramembrane proteolysis for activation of its signal transduction capacity. Upon cleavage, the extracellular domain EpEX is released as a soluble ligand while the intracellular domain EpICD translocates into the cytoplasm and eventually into the nucleus in combination with four-and-a-half LIM domains protein 2 (FHL2) and β-catenin, and drives cell proliferation.</p> <p>Methods</p> <p>EpCAM cleavage, induction of the target genes, and transmission of proliferation signals were investigated under varying density conditions using confocal laser scanning microscopy, immunoblotting, cell counting, and conditional cell systems.</p> <p>Results</p> <p>EpCAM cleavage, induction of the target genes, and transmission of proliferation signals were dependent on adequate cell-to-cell contact. If cell-to-cell contact was prohibited EpCAM did not provide growth advantages. If cells were allowed to undergo contact to each other, EpCAM transmitted proliferation signals based on signal transduction-related cleavage processes. Accordingly, the pre-cleaved version EpICD was not dependent on cell-to-cell contact in order to induce <it>c-myc </it>and cell proliferation, but necessitated nuclear translocation. For the case of contact-inhibited cells, although cleavage of EpCAM occurred, nuclear translocation of EpICD was reduced, as were EpCAM effects.</p> <p>Conclusion</p> <p>Activation of EpCAM's cleavage and oncogenic capacity is dependent on cellular interaction (juxtacrine) to provide for initial signals of regulated intramembrane proteolysis, which then support signalling via soluble EpEX (paracrine).</p
Entropy Stable Numerical Schemes for Two-Fluid Plasma Equations
Two-fluid ideal plasma equations are a generalized form of the ideal MHD
equations in which electrons and ions are considered as separate species. The
design of efficient numerical schemes for the these equations is complicated on
account of their non-linear nature and the presence of stiff source terms,
especially for high charge to mass ratios and for low Larmor radii. In this
article, we design entropy stable finite difference schemes for the two-fluid
equations by combining entropy conservative fluxes and suitable numerical
diffusion operators. Furthermore, to overcome the time step restrictions
imposed by the stiff source terms, we devise time-stepping routines based on
implicit-explicit (IMEX)-Runge Kutta (RK) schemes. The special structure of the
two-fluid plasma equations is exploited by us to design IMEX schemes in which
only local (in each cell) linear equations need to be solved at each time step.
Benchmark numerical experiments are presented to illustrate the robustness and
accuracy of these schemes.Comment: Accepted in Journal of Scientific Computin
Age constraints for the Trachilos footprints from Crete.
We present an updated time frame for the 30 m thick late Miocene sedimentary Trachilos section from the island of Crete that contains the potentially oldest hominin footprints. The section is characterized by normal magnetic polarity. New and published foraminifera biostratigraphy results suggest an age of the section within the Mediterranean biozone MMi13d, younger than ~ 6.4 Ma. Calcareous nannoplankton data from sediments exposed near Trachilos and belonging to the same sub-basin indicate deposition during calcareous nannofossil biozone CN9bB, between 6.023 and 6.727 Ma. By integrating the magneto- and biostratigraphic data we correlate the Trachilos section with normal polarity Chron C3An.1n, between 6.272 and 6.023 Ma. Using cyclostratigraphic data based on magnetic susceptibility, we constrain the Trachilos footprints age at ~ 6.05 Ma, roughly 0.35 Ma older than previously thought. Some uncertainty remains related to an inaccessible interval of ~ 8 m section and the possibility that the normal polarity might represent the slightly older Chron C3An.2n. Sediment accumulation rate and biostratigraphic arguments, however, stand against these points and favor a deposition during Chron C3An.1n
Particle Acceleration in Pulsar Wind Nebulae: PIC modelling
We discuss the role of particle-in-cell (PIC) simulations in unveiling the
origin of the emitting particles in PWNe. After describing the basics of the
PIC technique, we summarize its implications for the quiescent and the flaring
emission of the Crab Nebula, as a prototype of PWNe. A consensus seems to be
emerging that, in addition to the standard scenario of particle acceleration
via the Fermi process at the termination shock of the pulsar wind, magnetic
reconnection in the wind, at the termination shock and in the Nebula plays a
major role in powering the multi-wavelength signatures of PWNe.Comment: 32 pages, 16 figures, to appear in the book "Modelling Nebulae"
edited by D. Torres for Springer, based on the invited contributions to the
workshop held in Sant Cugat (Barcelona), June 14-17, 201
The neurobiology of Etruscan shrew active touch
The Etruscan shrew, Suncus etruscus, is not only the smallest terrestrial mammal, but also one of the fastest and most tactile hunters described to date. The shrew's skeletal muscle consists entirely of fast-twitch types and lacks slow fibres. Etruscan shrews detect, overwhelm, and kill insect prey in large numbers in darkness. The cricket prey is exquisitely mechanosensitive and fast-moving, and is as big as the shrew itself. Experiments with prey replica show that shape cues are both necessary and sufficient for evoking attacks. Shrew attacks are whisker guided by motion- and size-invariant Gestalt-like prey representations. Shrews often attack their prey prior to any signs of evasive manoeuvres. Shrews whisk at frequencies of approximately 14 Hz and can react with latencies as short as 25–30 ms to prey movement. The speed of attacks suggests that shrews identify and classify prey with a single touch. Large parts of the shrew's brain respond to vibrissal touch, which is represented in at least four cortical areas comprising collectively about a third of the cortical volume. Etruscan shrews can enter a torpid state and reduce their body temperature; we observed that cortical response latencies become two to three times longer when body temperature drops from 36°C to 24°C, suggesting that endothermy contributes to the animal's high-speed sensorimotor performance. We argue that small size, high-speed behaviour and extreme dependence on touch are not coincidental, but reflect an evolutionary strategy, in which the metabolic costs of small body size are outweighed by the advantages of being a short-range high-speed touch and kill predator
The Hsc/Hsp70 Co-Chaperone Network Controls Antigen Aggregation and Presentation during Maturation of Professional Antigen Presenting Cells
The maturation of mouse macrophages and dendritic cells involves the transient deposition of ubiquitylated proteins in the form of dendritic cell aggresome-like induced structures (DALIS). Transient DALIS formation was used here as a paradigm to study how mammalian cells influence the formation and disassembly of protein aggregates through alterations of their proteostasis machinery. Co-chaperones that modulate the interplay of Hsc70 and Hsp70 with the ubiquitin-proteasome system (UPS) and the autophagosome-lysosome pathway emerged as key regulators of this process. The chaperone-associated ubiquitin ligase CHIP and the ubiquitin-domain protein BAG-1 are essential for DALIS formation in mouse macrophages and bone-marrow derived dendritic cells (BMDCs). CHIP also cooperates with BAG-3 and the autophagic ubiquitin adaptor p62 in the clearance of DALIS through chaperone-assisted selective autophagy (CASA). On the other hand, the co-chaperone HspBP1 inhibits the activity of CHIP and thereby attenuates antigen sequestration. Through a modulation of DALIS formation CHIP, BAG-1 and HspBP1 alter MHC class I mediated antigen presentation in mouse BMDCs. Our data show that the Hsc/Hsp70 co-chaperone network controls transient protein aggregation during maturation of professional antigen presenting cells and in this way regulates the immune response. Similar mechanisms may modulate the formation of aggresomes and aggresome-like induced structures (ALIS) in other mammalian cell types
EpCAM (CD326) finding its role in cancer
Although epithelial cell adhesion/activating molecule (EpCAM/CD326) is one of the first tumour-associated antigens identified, it has never received the same level of attention as other target proteins for therapy of cancer. It is also striking that ever since its discovery in the late 1970s the actual contribution of EpCAM to carcinogenesis remained unexplored until very recently. With a First International Symposium on EpCAM Biology and Clinical Application this is now changing. Key topics discussed at the meeting were the frequency and level of EpCAM expression on various cancers and its prognostic potential, the role of EpCAM as an oncogenic signalling molecule for cancer cells, recent progress on EpCAM-directed immunotherapeutic approaches in clinical development and the interaction of EpCAM with other proteins, which may provide a basis for a therapeutic window and repression of its growth-promoting signalling in carcinoma. Future research on EpCAM may benefit from a unified nomenclature and more frequent exchange among those who have been working on this cancer target during the past 30 years and will do so in the future
- …