198 research outputs found
Kondo effect in a one dimensional d-wave superconductor
We derive a solvable resonant-level type model, to describe an impurity spin
coupled to zero-energy bound states localized at the edge of a one dimensional
d-wave superconductor. This results in a two-channel Kondo effect with a quite
unusual low-temperature thermodynamics. For instance, the local impurity
susceptibility yields a finite maximum at zero temperature (but no
logarithmic-divergence) due to the splitting of the impurity in two Majorana
fermions. Moreover, we make comparisons with the Kondo effect occurring in a
two dimensional d-wave superconductor.Comment: 9 pages, final version; To be published in Europhysics Letter
Andreev scattering in the asymmetric ladder with preformed bosonic pairs
We discuss the phase coherence which emanates from the ladder-like proximity
effect between a ``weak superconductor'' with preformed bosonic pairs (here, a
single-chain Luther-Emery liquid with superconducting correlations that decay
approximately as ) and a Fermi gas with unpaired fermions. Carefully
studying tunneling mechanism(s), we show that the boson-mediated Cooper pairing
between remaining unpaired electrons results in a quasi long-range
superconductivity: Superconducting correlations decay very slowly as
with . This process is reminiscent of the coupling
of fermions to preformed bosonic pairs introduced in the context of high-Tc
cuprates.Comment: 5 pages, final version (To appear in PRB Rapid Communication
Symmetric Dense Inception Network for Simultaneous Cell Detection and Classification in Multiplex Immunohistochemistry Images
Deep-learning based automatic analysis of the multiplex immunohistochemistry (mIHC) enables distinct cell populations to be localized on a large scale, providing insights into disease biology and therapeutic targets. However, standard deep-learning pipelines performed cell detection and classification as two-stage tasks, which is computationally inefficient and faces challenges to incorporate neighbouring tissue context for determining the cell identity. To overcome these limitations and to obtain a more accurate mapping of cell phenotypes, we presented a symmetric dense inception neural network for detecting and classifying cells in mIHC slides simultaneously. The model was applied with a novel stop-gradient strategy and a loss function accounted for class imbalance. When evaluated on an ovarian cancer dataset containing 6 cell types, the model achieved an F1 score of 0.835 in cell detection, and a weighted F1-score of 0.867 in cell classification, which outperformed separate models trained on individual tasks by 1.9% and 3.8% respectively. Taken together, the proposed method boosts the learning efficiency and prediction accuracy of cell detection and classification by simultaneously learning from both tasks
Theory of anomalous magnetic interference pattern in mesoscopic SNS Josephson junctions
The magnetic interference pattern in mesoscopic SNS Josephson junctions is
sensitive to the scattering in the normal part of the system. In this paper we
investigate it, generalizing Ishii's formula for current-phase dependence to
the case of normal scattering at NS boundaries in an SNS junction of finite
width. The resulting flattening of the first diffraction peak is consistent
with experimental data for S-2DEG-S mesoscopic junctions.Comment: 6 pages, 5 figures. Phys. Rev. B 68, 144514 (2003
Quality of life in survivors after cervical artery dissection
Background and purpose : Little data exists about longterm outcome, quality of life (QOL) and its predictors after spontaneous cervical artery dissections (sCAD). Methods : Clinical and radiological data of 114 patients with sCAD were collected prospectively. Six patients died within 3 months, the remaining 108 were contacted after a mean of 1498 days (range: 379-3455), 99 survivors (92 %) replied. QOL, assessed with the stroke-specific QOL scale (SSQOL), and functional abilities, measured with modified Rankin Scale (mRS) were compared, and predictors of QOL were analyzed. Subgroup analyses were performed for patients with ischemic stroke, those with isolated local symptoms or transient ischemic symptoms and those without significant disabilities (mRS 0-1) at follow-up. Results : Seventy-one of 99 patients (72 %) had no significant disability, but only 53 (54 %) reported a good QOL (SS-QOL ≥ 4). Compared to the self-rated premorbid QOL of all patients, SS-QOL was impaired after sCAD (p 0.5). High National Institute of Health Stroke Scale score on admission and higher age were independent predictors of impaired QOL (p < 0.05). Conclusion : QOL is impaired in almost half of long-term survivors after sCAD, even in patients with local or transient symptoms or without functional disability. Impairment of QOL is a surprisingly frequent long-term sequela after sCAD and deserves attention as an outcome measure in these patient
Weighted complex projective 2-designs from bases: optimal state determination by orthogonal measurements
We introduce the problem of constructing weighted complex projective
2-designs from the union of a family of orthonormal bases. If the weight
remains constant across elements of the same basis, then such designs can be
interpreted as generalizations of complete sets of mutually unbiased bases,
being equivalent whenever the design is composed of d+1 bases in dimension d.
We show that, for the purpose of quantum state determination, these designs
specify an optimal collection of orthogonal measurements. Using highly
nonlinear functions on abelian groups, we construct explicit examples from d+2
orthonormal bases whenever d+1 is a prime power, covering dimensions d=6, 10,
and 12, for example, where no complete sets of mutually unbiased bases have
thus far been found.Comment: 28 pages, to appear in J. Math. Phy
Long-term efficacy, tolerability and overall survival in patients with platinum-sensitive, recurrent high-grade serous ovarian cancer treated with maintenance olaparib capsules following response to chemotherapy
BACKGROUND: In Study 19, maintenance monotherapy with olaparib significantly prolonged progression-free survival vs placebo in patients with platinum-sensitive, recurrent high-grade serous ovarian cancer. METHODS: Study 19 was a randomised, placebo-controlled, Phase II trial enrolling 265 patients who had received at least two platinum-based chemotherapy regimens and were in complete or partial response to their most recent regimen. Patients were randomised to olaparib (capsules; 400 mg bid) or placebo. We present long-term safety and final mature overall survival (OS; 79% maturity) data, from the last data cut-off (9 May 2016). RESULTS: Thirty-two patients (24%) received maintenance olaparib for over 2 years; 15 (11%) did so for over 6 years. No new tolerability signals were identified with long-term treatment and adverse events were generally low grade. The incidence of discontinuations due to adverse events was low (6%). An apparent OS advantage was observed with olaparib vs placebo (hazard ratio 0.73, 95% confidence interval 0.55‒0.95, P = 0.02138) irrespective of BRCA1/2 mutation status, although the predefined threshold for statistical significance was not met. CONCLUSIONS: Study 19 showed a favourable final OS result irrespective of BRCA1/2 mutation status and unprecedented long-term benefit with maintenance olaparib for a subset of platinum-sensitive, recurrent ovarian cancer patients
Inhomogeneously doped two-leg ladder systems
A chemical potential difference between the legs of a two-leg ladder is found
to be harmful for Cooper pairing. The instability of superconductivity in such
systems is analyzed by compairing results of various analytical and numerical
methods. Within a strong coupling approach for the t-J model, supplemented by
exact numerical diagonalization, hole binding is found unstable beyond a
finite, critical chemical potential difference. The spinon-holon mean field
theory for the t-J model shows a clear reduction of the the BCS gaps upon
increasing the chemical potential difference leading to a breakdown of
superconductivity. Based on a renormalization group approach and Abelian
bosonization, the doping dependent phase diagram for the weakly interacting
Hubbard model with different chemical potentials was determined.Comment: Revtex4, 11 pages, 7 figure
Fermi surface renormalization in Hubbard ladders
We derive the one-loop renormalization equations for the shift in the
Fermi-wavevectors for one-dimensional interacting models with four Fermi-points
(two left and two right movers) and two Fermi velocities v_1 and v_2. We find
the shift to be proportional to (v_1-v_2)U^2, where U is the Hubbard-U. Our
results apply to the Hubbard ladder and to the t_1-t_2 Hubbard model. The
Fermi-sea with fewer particles tends to empty. The stability of a saddle point
due to shifts of the Fermi-energy and the shift of the Fermi-wavevector at the
Mott-Hubbard transition are discussed.Comment: 5 pages, 4 Postscript figure
Interaction-induced Fermi surface deformations in quasi one-dimensional electronic systems
We consider serious conceptual problems with the application of standard
perturbation theory, in its zero temperature version, to the computation of the
dressed Fermi surface for an interacting electronic system. In order to
overcome these difficulties, we set up a variational approach which is shown to
be equivalent to the renormalized perturbation theory where the dressed Fermi
surface is fixed by recursively computed counterterms. The physical picture
that emerges is that couplings that are irrelevant tend to deform the Fermi
surface in order to become more relevant (irrelevant couplings being those that
do not exist at vanishing excitation energy because of kinematical constraints
attached to the Fermi surface). These insights are incorporated in a
renormalization group approach, which allows for a simple approximate
computation of Fermi surface deformation in quasi one-dimensional electronic
conductors. We also analyze flow equations for the effective couplings and
quasiparticle weights. For systems away from half-filling, the flows show three
regimes corresponding to a Luttinger liquid at high energies, a Fermi liquid,
and a low-energy incommensurate spin-density wave. At half-filling Umklapp
processes allow for a Mott insulator regime where the dressed Fermi surface is
flat, implying a confined phase with vanishing effective transverse
single-particle coherence. The boundary between the confined and Fermi liquid
phases is found to occur for a bare transverse hopping amplitude of the order
of the Mott charge gap of a single chain.Comment: 38 pages, 39 figures. Accepted for publication in Phys. Rev.
- …