Abstract

We derive the one-loop renormalization equations for the shift in the Fermi-wavevectors for one-dimensional interacting models with four Fermi-points (two left and two right movers) and two Fermi velocities v_1 and v_2. We find the shift to be proportional to (v_1-v_2)U^2, where U is the Hubbard-U. Our results apply to the Hubbard ladder and to the t_1-t_2 Hubbard model. The Fermi-sea with fewer particles tends to empty. The stability of a saddle point due to shifts of the Fermi-energy and the shift of the Fermi-wavevector at the Mott-Hubbard transition are discussed.Comment: 5 pages, 4 Postscript figure

    Similar works

    Full text

    thumbnail-image

    Available Versions