191 research outputs found

    Robustness of the quantum Hall effect, sample size versus sample topology, and quality control management of III-V molecular beam epitaxy

    Full text link
    We measure the IQHE on macroscopic (1.5cm x 1.5cm) "quick 'n' dirty" prepared III-V heterostructure samples with van der Pauw and modified Corbino geometries at 1.3 K. We compare our results with (i) data taken on smaller specimens, among them samples with a standard Hall bar geometry, (ii) results of our numerical analysis taking inhomogenities of the 2DEG into account. Our main finding is a confirmation of the expected robustness of the IQHE which favours the development of wide plateaux for small filling factors and very large sample sizes (here with areas 10,000 times larger than in standard arrangements).Comment: 51 pages, 27 figures, 3 tables, 49 references. This paper is intimately related to the set-up decribed in physics/980400

    Thermoelectric Response of an Interacting Two-Dimensional Electron Gas in Quantizing Magnetic Field

    Full text link
    We present a discussion of the linear thermoelectric response of an interacting electron gas in a quantizing magnetic field. Boundary currents can carry a significant fraction of the net current passing through the system. We derive general expressions for the bulk and boundary components of the number and energy currents. We show that the local current density may be described in terms of ``transport'' and ``internal magnetization'' contributions. The latter carry no net current and are not observable in standard transport experiments. We show that although Onsager relations cannot be applied to the local current, they are valid for the transport currents and hence for the currents observed in standard transport experiments. We relate three of the four thermoelectric response coefficients of a disorder-free interacting two-dimensional electron gas to equilibrium thermodynamic quantities. In particular, we show that the diffusion thermopower is proportional to the entropy per particle, and we compare this result with recent experimental observations.Comment: 18 pages, 2 postscript figures included. Revtex with epsf.tex and multicol.sty. In the revised version, the comparison with experimental observations at ν=1/2,3/2\nu=1/2, 3/2 is extended to include the possibility of corrections due to weak impurity scattering. The conclusions that we reach regarding the applicability of the composite fermion model at these filling fractions are not affecte

    A transcriptomic snapshot of early molecular communication between Pasteuria penetrans and Meloidogyne incognita

    Get PDF
    © The Author(s). 2018Background: Southern root-knot nematode Meloidogyne incognita (Kofoid and White, 1919), Chitwood, 1949 is a key pest of agricultural crops. Pasteuria penetrans is a hyperparasitic bacterium capable of suppressing the nematode reproduction, and represents a typical coevolved pathogen-hyperparasite system. Attachment of Pasteuria endospores to the cuticle of second-stage nematode juveniles is the first and pivotal step in the bacterial infection. RNA-Seq was used to understand the early transcriptional response of the root-knot nematode at 8 h post Pasteuria endospore attachment. Results: A total of 52,485 transcripts were assembled from the high quality (HQ) reads, out of which 582 transcripts were found differentially expressed in the Pasteuria endospore encumbered J2 s, of which 229 were up-regulated and 353 were down-regulated. Pasteuria infection caused a suppression of the protein synthesis machinery of the nematode. Several of the differentially expressed transcripts were putatively involved in nematode innate immunity, signaling, stress responses, endospore attachment process and post-attachment behavioral modification of the juveniles. The expression profiles of fifteen selected transcripts were validated to be true by the qRT PCR. RNAi based silencing of transcripts coding for fructose bisphosphate aldolase and glucosyl transferase caused a reduction in endospore attachment as compared to the controls, whereas, silencing of aspartic protease and ubiquitin coding transcripts resulted in higher incidence of endospore attachment on the nematode cuticle. Conclusions: Here we provide evidence of an early transcriptional response by the nematode upon infection by Pasteuria prior to root invasion. We found that adhesion of Pasteuria endospores to the cuticle induced a down-regulated protein response in the nematode. In addition, we show that fructose bisphosphate aldolase, glucosyl transferase, aspartic protease and ubiquitin coding transcripts are involved in modulating the endospore attachment on the nematode cuticle. Our results add new and significant information to the existing knowledge on early molecular interaction between M. incognita and P. penetrans.Peer reviewedFinal Published versio

    Straw blood cell count, growth, inhibition and comparison to apoptotic bodies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mammalian cells transform into individual tubular straw cells naturally in tissues and in response to desiccation related stress <it>in vitro</it>. The transformation event is characterized by a dramatic cellular deformation process which includes: condensation of certain cellular materials into a much smaller tubular structure, synthesis of a tubular wall and growth of filamentous extensions. This study continues the characterization of straw cells in blood, as well as the mechanisms of tubular transformation in response to stress; with specific emphasis placed on investigating whether tubular transformation shares the same signaling pathway as apoptosis.</p> <p>Results</p> <p>There are approximately 100 billion, unconventional, tubular straw cells in human blood at any given time. The straw blood cell count (SBC) is 45 million/ml, which accounts for 6.9% of the bloods dry weight. Straw cells originating from the lungs, liver and lymphocytes have varying nodules, hairiness and dimensions. Lipid profiling reveals severe disruption of the plasma membrane in CACO cells during transformation. The growth rates for the elongation of filaments and enlargement of rabbit straw cells is 0.6~1.1 (μm/hr) and 3.8 (μm<sup>3</sup>/hr), respectively. Studies using apoptosis inhibitors and a tubular transformation inhibitor in CACO2 cells and in mice suggested apoptosis produced apoptotic bodies are mediated differently than tubular transformation produced straw cells. A single dose of 0.01 mg/kg/day of p38 MAPK inhibitor in wild type mice results in a 30% reduction in the SBC. In 9 domestic animals SBC appears to correlate inversely with an animal's average lifespan (R<sup>2 </sup>= 0.7).</p> <p>Conclusion</p> <p>Straw cells are observed residing in the mammalian blood with large quantities. Production of SBC appears to be constant for a given animal and may involve a stress-inducible protein kinase (P38 MAPK). Tubular transformation is a programmed cell survival process that diverges from apoptosis. SBCs may be an important indicator of intrinsic aging-related stress.</p

    Targeting KSHV/HHV-8 Latency with COX-2 Selective Inhibitor Nimesulide: A Potential Chemotherapeutic Modality for Primary Effusion Lymphoma

    Get PDF
    The significance of inflammation in KSHV biology and tumorigenesis prompted us to examine the role of COX-2 in primary effusion lymphoma (PEL), an aggressive AIDS-linked KSHV-associated non-Hodgkin's lymphoma (NHL) using nimesulide, a well-known COX-2 specific NSAID. We demonstrate that (1) nimesulide is efficacious in inducing proliferation arrest in PEL (KSHV+/EBV-; BCBL-1 and BC-3, KSHV+/EBV+; JSC-1), EBV-infected (KSHV-/EBV+; Raji) and non-infected (KSHV-/EBV-; Akata, Loukes, Ramos, BJAB) high malignancy human Burkitt's lymphoma (BL) as well as KSHV-/EBV+ lymphoblastoid (LCL) cell lines; (2) nimesulide is selectively toxic to KSHV infected endothelial cells (TIVE-LTC) compared to TIVE and primary endothelial cells (HMVEC-d); (3) nimesulide reduced KSHV latent gene expression, disrupted p53-LANA-1 protein complexes, and activated the p53/p21 tumor-suppressor pathway; (4) COX-2 inhibition down-regulated cell survival kinases (p-Akt and p-GSK-3β), an angiogenic factor (VEGF-C), PEL defining genes (syndecan-1, aquaporin-3, and vitamin-D3 receptor) and cell cycle proteins such as cyclins E/A and cdc25C; (5) nimesulide induced sustained cell death and G1 arrest in BCBL-1 cells; (6) nimesulide substantially reduced the colony forming capacity of BCBL-1 cells. Overall, our studies provide a comprehensive molecular framework linking COX-2 with PEL pathogenesis and identify the chemotherapeutic potential of nimesulide in treating PEL

    Vitamin C supplement use may protect against gallstones: an observational study on a randomly selected population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Animal experiments have shown a protective effect of vitamin C on the formation of gallstones. Few data in humans suggest an association between reduced vitamin C intake and increased prevalence of gallstone disease. The aim of this study was to assess the possible association of regular vitamin C supplementation with gallstone prevalence.</p> <p>Methods</p> <p>An observational, population-based study of 2129 subjects aged 18-65 years randomly selected from the general population in southern Germany was conducted. Abdominal ultrasound examination, completion of a standardized questionnaire, compilation of anthropometric data and blood tests were used. Data were collected in November and December 2002. Data analysis was conducted between December 2005 and January 2006.</p> <p>Results</p> <p>Prevalence of gallstones in the study population was 7.8% (167/2129). Subjects reporting vitamin C supplementation showed a prevalence of 4.7% (11/232), whereas in subjects not reporting regular vitamin C supplementation, the prevalence was 8.2% (156/1897). Female gender, hereditary predisposition, increasing age and body-mass index (BMI) were associated with increased prevalence of gallstones. Logistic regression with backward elimination adjusted for these factors showed reduced gallstone prevalence for vitamin C supplementation (odds ratio, OR 0.34; 95% confidence interval, CI 0.14 to 0.81; P = 0.01), increased physical activity (OR 0.62; 95% CI, 0.42 to 0.94; P = 0.02), and higher total cholesterol (OR 0.65; 95% CI, 0.52 to 0.79; P < 0.001).</p> <p>Conclusion</p> <p>Regular vitamin C supplementation and, to a lesser extent, increased physical activity and total cholesterol levels are associated with a reduced prevalence of gallstones. Regular vitamin C supplementation might exert a protective effect on the development of gallstones.</p

    The Lsm1-7/Pat1 complex binds to stress-activated mRNAs and modulates the response to hyperosmotic shock

    Get PDF
    RNA-binding proteins (RBPs) establish the cellular fate of a transcript, but an understanding of these processes has been limited by a lack of identified specific interactions between RNA and protein molecules. Using MS2 RNA tagging, we have purified proteins associated with individual mRNA species induced by osmotic stress, STL1 and GPD1. We found members of the Lsm1-7/Pat1 RBP complex to preferentially bind these mRNAs, relative to the non-stress induced mRNAs, HYP2 and ASH1. To assess the functional importance, we mutated components of the Lsm1-7/Pat1 RBP complex and analyzed the impact on expression of osmostress gene products. We observed a defect in global translation inhibition under osmotic stress in pat1 and lsm1 mutants, which correlated with an abnormally high association of both non-stress and stress-induced mRNAs to translationally active polysomes. Additionally, for stress-induced proteins normally triggered only by moderate or high osmostress, in the mutants the protein levels rose high already at weak hyperosmosis. Analysis of ribosome passage on mRNAs through co-translational decay from the 5' end (5P-Seq) showed increased ribosome accumulation in lsm1 and pat1 mutants upstream of the start codon. This effect was particularly strong for mRNAs induced under osmostress. Thus, our results indicate that, in addition to its role in degradation, the Lsm1-7/Pat1 complex acts as a selective translational repressor, having stronger effect over the translation initiation of heavily expressed mRNAs. Binding of the Lsm1-7/Pat1p complex to osmostress-induced mRNAs mitigates their translation, suppressing it in conditions of weak or no stress, and avoiding a hyperresponse when triggered

    Integrated multi-omics analyses reveal the pleiotropic nature of the control of gene expression by Puf3p

    Get PDF
    The PUF family of RNA-binding proteins regulate gene expression post-transcriptionally. Saccharomyces cerevisiae Puf3p is characterised as binding nuclear-encoded mRNAs specifying mitochondrial proteins. Extensive studies of its regulation of COX17 demonstrate its role in mRNA decay. Using integrated genome-wide approaches we define an expanded set of Puf3p target mRNAs and quantitatively assessed the global impact of loss of PUF3 on gene expression using mRNA and polysome profiling and quantitative proteomics. In agreement with prior studies, our sequencing of affinity-purified Puf3-TAP associated mRNAs (RIP-seq) identified mRNAs encoding mitochondrially-targeted proteins. Additionally, we also found 720  new mRNA targets that predominantly encode proteins that enter the nucleus. Comparing transcript levels in wild-type and puf3∆ cells revealed that only a small fraction of mRNA levels alter, suggesting Puf3p determines mRNA stability for only a limited subset of its target mRNAs. Finally, proteomic and translatomic studies suggest that loss of Puf3p has widespread, but modest, impact on mRNA translation. Taken together our integrated multi-omics data point to multiple classes of Puf3p targets, which display coherent post-transcriptional regulatory properties and suggest Puf3p plays a broad, but nuanced, role in the fine-tuning of gene expression
    corecore