13,339 research outputs found

    Surfaces with prescribed Weingarten-Operator

    Get PDF
    We investigate pairs of surfaces in Euclidean 3-space with the same Weingarten operator in case that one surface is given as surface of revolution. Our local and global results complement global results on ovaloids of revolution from [S-V-W-W]

    Left-Handed W Bosons at the LHC

    Get PDF
    The production of W bosons in association with jets is an important background to new physics at the LHC. Events in which the W carries large transverse momentum and decays leptonically lead to large missing energy and are of particular importance. We show that the left-handed nature of the W coupling, combined with valence quark domination at a pp machine, leads to a large left-handed polarization for both W^+ and W^- bosons at large transverse momenta. The polarization fractions are very stable with respect to QCD corrections. The leptonic decay of the W bosons translates the common left-handed polarization into a strong asymmetry in transverse momentum distributions between positrons and electrons, and between neutrinos and anti-neutrinos (missing transverse energy). Such asymmetries may provide an effective experimental handle on separating W + jets from top quark production, which exhibits very little asymmetry due to C invariance, and from various types of new physics.Comment: 32 pages, revtex, 17 figures, 3 tables, v2 minor corrections to ME+PS results, no changes to conclusions, added reference

    Titan's magnetic field signature during the Cassini T34 flyby: Comparison between hybrid simulations and MAG data

    Get PDF
    During the T34 flyby on 19 July 2007, the Cassini spacecraft passed through the magnetic pile-up region at Titan's ramside. The magnetic environment of Titan during this flyby is studied using a three-dimensional hybrid simulation model. This approach treats the electrons of the plasma as a massless, charge-neutralizing fluid, whereas the effects of finite ion gyroradii are taken into account by modeling the ions as individual particles. The simulation results are compared to data collected by the Cassini Magnetometer Instrument. The key features of the measured magnetic field signature have shown to be fully reproducible in the framework of the simulation model. Several signatures in the observed magnetic field can be ascribed to the passage of the Cassini spacecraft through the magnetic barrier upstream of Titan.Fil: Simon, S.. Technische Universitat Braunschweig; AlemaniaFil: Motschmann, U.. Technische Universitat Braunschweig; AlemaniaFil: Kleindienst, G.. Technische Universitat Braunschweig; AlemaniaFil: Glassmeier, K. H.. Technische Universitat Braunschweig; AlemaniaFil: Bertucci, Cesar. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: Dougherty, M. K.. Imperial College London; Reino Unid

    Tzitz\'eica transformation is a dressing action

    Full text link
    We classify the simplest rational elements in a twisted loop group, and prove that dressing actions of them on proper indefinite affine spheres give the classical Tzitz\'eica transformation and its dual. We also give the group point of view of the Permutability Theorem, construct complex Tzitz\'eica transformations, and discuss the group structure for these transformations

    The structure of hot gas in Cepheus B

    Full text link
    By observing radiation-affected gas in the Cepheus B molecular cloud we probe whether the sequential star formation in this source is triggered by the radiation from newly formed stars. We used the dual band receiver GREAT onboard SOFIA to map [C II] and CO 13--12 and 11--10 in Cep B and compared the spatial distribution and the spectral profiles with complementary ground-based data of low-JJ transitions of CO isotopes, atomic carbon, and the radio continuum. The interaction of the radiation from the neighboring OB association creates a large photon-dominated region (PDR) at the surface of the molecular cloud traced through the photoevaporation of C^+. Bright internal PDRs of hot gas are created around the embedded young stars, where we detect evidence of the compression of material and local velocity changes; however, on the global scale we find no indications that the dense molecular material is dynamically affected.Comment: Accepted for publication in A&A (SOFIA/GREAT special issue

    Experimental characterization of frequency dependent squeezed light

    Full text link
    We report on the demonstration of broadband squeezed laser beams that show a frequency dependent orientation of the squeezing ellipse. Carrier frequency as well as quadrature angle were stably locked to a reference laser beam at 1064nm. This frequency dependent squeezing was characterized in terms of noise power spectra and contour plots of Wigner functions. The later were measured by quantum state tomography. Our tomograph allowed a stable lock to a local oscillator beam for arbitrary quadrature angles with one degree precision. Frequency dependent orientations of the squeezing ellipse are necessary for squeezed states of light to provide a broadband sensitivity improvement in third generation gravitational wave interferometers. We consider the application of our system to long baseline interferometers such as a future squeezed light upgraded GEO600 detector.Comment: 8 pages, 8 figure

    (In)finiteness of Spherically Symmetric Static Perfect Fluids

    Full text link
    This work is concerned with the finiteness problem for static, spherically symmetric perfect fluids in both Newtonian Gravity and General Relativity. We derive criteria on the barotropic equation of state guaranteeing that the corresponding perfect fluid solutions possess finite/infinite extent. In the Newtonian case, for the large class of monotonic equations of state, and in General Relativity we improve earlier results

    Macroscopic superpositions via nested interferometry: finite temperature and decoherence considerations

    Get PDF
    Recently there has been much interest in optomechanical devices for the production of macroscopic quantum states. Here we focus on a proposed scheme for achieving macroscopic superpositions via nested interferometry. We consider the effects of finite temperature on the superposition produced. We also investigate in detail the scheme's feasibility for probing various novel decoherence mechanisms.Comment: 12 pages, 2 figure

    Gaussian Wigner distributions and hierarchies of nonclassical states in quantum optics-The single mode case

    Get PDF
    A recently introduced hierarchy of states of a single mode quantised radiation field is examined for the case of centered Guassian Wigner distributions. It is found that the onset of squeezing among such states signals the transition to the strongly nonclassical regime. Interesting consequences for the photon number distribution, and explicit representations for them, are presented.Comment: 11 Pages Revtex one eps figure. Replaced with minor changes in ref

    Orbits and phase transitions in the multifractal spectrum

    Full text link
    We consider the one dimensional classical Ising model in a symmetric dichotomous random field. The problem is reduced to a random iterated function system for an effective field. The D_q-spectrum of the invariant measure of this effective field exhibits a sharp drop of all D_q with q < 0 at some critical strength of the random field. We introduce the concept of orbits which naturally group the points of the support of the invariant measure. We then show that the pointwise dimension at all points of an orbit has the same value and calculate it for a class of periodic orbits and their so-called offshoots as well as for generic orbits in the non-overlapping case. The sharp drop in the D_q-spectrum is analytically explained by a drastic change of the scaling properties of the measure near the points of a certain periodic orbit at a critical strength of the random field which is explicitly given. A similar drastic change near the points of a special family of periodic orbits explains a second, hitherto unnoticed transition in the D_q-spectrum. As it turns out, a decisive role in this mechanism is played by a specific offshoot. We furthermore give rigorous upper and/or lower bounds on all D_q in a wide parameter range. In most cases the numerically obtained D_q coincide with either the upper or the lower bound. The results in this paper are relevant for the understanding of random iterated function systems in the case of moderate overlap in which periodic orbits with weak singularity can play a decisive role.Comment: The article has been completely rewritten; the title has changed; a section about the typical pointwise dimension as well as several references and remarks about more general systems have been added; to appear in J. Phys. A; 25 pages, 11 figures, LaTeX2
    corecore