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Abstract

We investigate pairs of surfaces in Euclidean 3-space with the same Weingarten
operator in case that one surface is given as surface of revolution. Our local and
global results complement global results on ovaloids of revolution from [S-V-W-W].
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Introduction

In [S-V-W-W] we studied global uniqueness results of the following type:

Theorem A. Let x; x# : M ! E3 be ovaloids in Euclidean 3-space with nowhere dense
umbilics and with the property that, at any p 2M , the Weingarten operators S; S# and
the spherical volume forms !(III), !(III#) coincide:

S = S#; !(III) = !(III#):

Then x; x# are congruent.

Corollary B. Let x; x# : M ! E3 be ovaloids such that S = S# and !(III) = !(III#).
If x is analytic then x; x# are congruent up to a reparametrization.

The basic idea for the proof of Theorem A is to consider the unique, I-selfadjoint, positive
de�nite operator L de�ned by

I#(v; w) =: I(Lv; Lw)

and to study its algebraic and analytic properties. A second tool is to use the Codazzi
equations for S = S# in terms of the two Levi-Civita connections r = r(I) and r# =
r(I#) to get relations for the symmetric (1,2) di�erence tensor (r �r#) between the
connections which �nally lead to PDEs for the operator L.
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If one follows the proof it seems that one might drop the assumption on the volume forms.
We would like to state the following

Conjecture. Let x; x# : M ! E3 be ovaloids with nowhere dense umbilics and with
S = S# at corresponding points. Then x; x# are congruent.

An a�rmative answer to this conjecture would be an extrinsic counterpart to the intrinsic
rigidity result of Cohn-Vossen [COHN-V] which states that two isometric ovaloids in E3

are congruent. In Section 4 of [S-V-W-W] we gave the following partial answer to our
conjecture.

Theorem C. Let x : M ! E3 be an ovaloid of revolution with nowhere dense umbilics
and let x# : M ! E3 be another ovaloid with S = S# at corresponding points. Then
x; x# are congruent.

At the end of [S-V-W-W] we showed by an explicit example that there exists a non-
trivial 1-parameter family of complete surfaces of revolution xc : M ! E3 having the
same Weingarten operator. It is the aim of this paper (Sections 2{4) to give a complete
discussion of the local situation of a pair of surfaces x; x# : M ! E3, where x is a surface
of revolution and where the Weingarten operators coincide for any p 2M . In Section 5
we state the local results, in Section 6 we extend Theorem C.

2 Surfaces of revolution

We summarize well known properties of surfaces of revolution which we will need for our
discussion.
Consider a surface of revolution given in terms of parameters (u1; u2) by

x(u1; u2) = (r(u1) cos u2; r(u1) sinu2; s(u1)); r � 0; (2.0.1)

where u1 parametrizes the meridians as arc length parameter and u2 parametrizes the
parallels of latitude with radius r(u1) and r and s are di�erentiable functions. For a
function f = f(u1) we write f 0 := df=du1; thus we have

r0(u1)2 + s0(u1)2 = 1: (2.0.2)

u1; u2 are curvature line parameters for all points with r(u1) > 0. In case that the
functions r(u1) > 0, s(u1) are de�ned for 0 < u1 < � and also for u1 = 0 or u1 = � such
that

r(0) = 0; r0(0) = 1 or r(�) = 0; r0(�) = �1;
we call such points \poles" PS or PN (u1 = 0 or u1 = �); for symmetry reasons they
are umbilics. Near a pole, x1 = r(u1) cosu2, x2 = r(u1) sinu2 are parameters for the
surface. In general, the parameter u2 will be taken modulo 2�, i.e. u2 2 S1; but there
will be cases where one has to pass to a covering surface by taking u2 2 R. In every case,
according to the domain of the parameters, there is a manifoldM of dimension two such
that (2.0.1) de�nes an immersion x : M ! E3.
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It follows by a straightforward computation that the �rst fundamental form I =: g has
the representation on MnfPN ; PSg:

g11 = 1; g12 = 0; g22 = r2;

and r and s satisfy

S@1 = (r0s00 � r00s0)@1 and S@2 =
s0

r
@2;

where f@1; @2g denotes the Gau� basis associated to the local parameters.
The equation (r0)2+(s0)2 = 1 suggests to introduce the function � = �(u1) by cos� := r0

and sin� := s0. The Weingarten operator is represented by the matrix

S :

0
@ k1 0

0 k2

1
A =

0
@ �0 0

0 1
r
sin�

1
A

with k1; k2 as principal curvatures. The Codazzi equations reduce to the equation

k02 =
r0

r
(k1 � k2); (Cod)

while the Gau� integrability condition reads

r00 +Kr = 0: (Gau�)

3 Pairs of surfaces with the same Weingarten opera-

tor

In the beginning of this section we recall some local results from [S-V-W-W]. For a
moment, let M be a connected, oriented C1-manifold of dimension two; later again,
we will restrict to M as given in Section 2. Let x; x# : M ! E3 be a pair of surfaces
with �rst fundamental forms g; g# and associated Levi-Civita connections r := r(g),
r# := r(g#) and Weingarten operators S = S# . We have the following facts from
section 2 in [S-V-W-W].

3.1 Facts.

(i) There exists a unique g-self-adjoint, positive de�nite operator L such that

g#(u; v) = g(Lu;Lv) (3.1.1)

for tangent vectors u; v. Denote the positive eigenvalue functions of L by �1; �2;
they are continuous on M and, if �1 6= �2, di�erentiable.

(ii) The operator L and the Weingarten operator S = S# commute.

3



(iii) If x; x# admit a common curvature line parametrization on an open set U � M ,
then the eigendirections of S are eigendirections of L, and we have the following
local matrix representations:

g :

0
@ g11 0

0 g22

1
A ; g# :

0
@ �21g11 0

0 �22g22

1
A ;

L :

0
@ �1 0

0 �2

1
A ; S = S# :

0
@ k1 0

0 k2

1
A :

(iv) If �1; �2 are di�erentiable, their partial derivatives in terms of curvature line pa-
rameters satisfy

@2�1 = 0 = @1�2:

These equations are consequences of the Codazzi equations for S = S# in terms of
r and r#, resp.; they are an essential tool for our discussion below.

3.2 Codazzi equations. In curvature line parameters and with associated Gau� basis
f@1; @2g, the Codazzi equations for x read:

2 @2k1 = �@2 log(g11)(k1 � k2);

2 @1k2 = @1 log(g22)(k1 � k2):

4 The local discussion

Let x : M ! E3 be a surface of revolution as given in Section 2 and x# : M ! E3 a
second surface with the same parameter domainM . Let U �M be open, connected and
assume that x is without umbilics on U . Then we can apply the parametrization and
matrix representations from 3.1(iii); moreover, �1 and �2 are di�erentiable on U .
We discuss the consequences of the integrability conditions in terms of the representations
in 3.1(iii). One easily veri�es that there is no further information from the Codazzi
equations. The Gau� equation and K = det S = det S# = K# lead to an ODE which is
crucial for our discussion; see Section 4 in [S-V-W-W].

4.1 Proposition. The functions r = r(u1) and � := (�1)
�2 � 1 = � (u1) satisfy

r00� +
1

2
r0� 0 = 0;

thus there exists c 2 R such that

(r0)2� = c: (4.1.1)

4.2 Consequences.

(i) If c = 0, then r = const or �1 = 1.

4



(ii) If c 6= 0, then r0 6= 0 and

�1 =
jr0jp

(r0)2 + c
6= 1:

4.3 Discussion of the case c = 0.

(a) If r =: r0 = const then (r0)2 + (s0)2 = 1 implies s = u1 and x lies on a circular
cylinder

x = (r0 cosu
2; r0 sinu

2; u1):

Choosing arbitrary positive functions �1(u1); �2(u2), the invariants g# and S# are
given by 3.1 (iii); thus the surface x# is uniquely determined.

Reparametrize

�u1 :=

Z u1

�1(u)du; �u2 :=

Z u2

�2(v)dv: (4.3.1)

One veri�es that the solution x# is given by

x# = (r0 cos �u
2; r0 sin �u

2; �u1);

thus x# is another parametrization of the same circular cylinder and the di�eomor-
phism (u1; u2) 7! (�u1; �u2) preserves the Weingarten operator: S = S# .

(b) If �1 = 1 we again reparametrize, using (4.3.1). Analogously to the foregoing we
arrive at

x# = (r(u1) cos �u2; r(u1) sin(�u2); s(u1)): (4.3.2)

x# is a modi�ed parametrization of the same surface of revolution. Again the
di�eomorphism (u1; u2) 7! (u1; �u2) preserves the Weingarten operator.

4.4 Discussion of the case c 6= 0. For �xed c, the function �1 is given by 4.2(ii); we
reparametrize x#c by

�u1c :=
R u1

�1(u)du; �u2c := a
R u2

�2(v)dv; 0 <
p
1 + c =: a 2 R: (4.4.1)

Introduce the functions

�r(�u1c) :=
1

a
r(u1) and �s(�u1) :=

1

a

Z u1p
(a�1)2 � (r0)2du: (4.4.2)

Choosing the constant a as given in (4.4.1) and using 4.2(ii), we get:

4.5 Proposition. In terms of the coordinates (�u1c ; �u
2
c), which both depend on the constant

c, the surface x#c is given by

x#c (�u
1; �u2) = (�r(�u1) cos �u2; �r(�u1) sin �u2; �s(�u1));
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in particular, x#c is a surface of revolution; moreover S = S#c in corresponding points
(u1; u2) 7! (�u1c; �u

2
c) for any c 6= 0. x#c is also de�ned for c = 0; the choice �2 = a�1 (i.e.

�u2 = u2) yields x#0 = x.

4.6 Remark. (a) Recall (r0)2 � 1 from (2.0.2). According to 4.2(ii) the inequality c 6= 0
implies �1 6= 1, in particular:

(i) c > 0, �1 < 1; in this case we have �1 � 1p
1+c

;

(ii) c < 0, �1 > 1; in this case we have �1 < c and �1 � 1p
1+c

.

In both cases we have �1 6=
p
1 + c.

(b) We discuss the special case c 6= 0; �1 = const 6= 1 and �1�2 = 1 for (4.1.1). Integrating

(4.1.1), we get r = �1
p
c(1� �21)

�1 u1 and s =
p
(1 � �21)

�1f1� (1 + c)�21g u1 from
(2.0.2); thus we have a two-parameter family of circular cones

xc;�1 = u1
r

c

1� �21
(�1 cos u

2; �1 sinu
2;

r
1� (1 + c)�21

c
):

For �xed c; �1; �2 = ��11 , (4.4.1) and (4.4.2) yield the corresponding family of cones

x#
c;�1

= �1u
1

r
c

(1 + c)(1� �21)
(cos �u2; sin �u2;

r
1� (1 + c)�21

c
)

having the same Weingarten operator and the same Riemannian volume form at (u1; u2),

but being non-isometric (and thus non-congruent). Especially s
r
6= s#

r#
and �u2 =

p
1+c
�1

u1 6=
u1 since �1 6=

p
1 + c.

(c) In [S-V-W-W] we illustrated Proposition 4.5 by the example of the elliptic paraboloid

x(u; v) = (u cos v; u sinv;
1

2
u2)

having the same Weingarten operator as any surface of the one-parameter family of
strongly convex surfaces of revolution

xc(u; v) = (
up
1 + c

cos v;
up
1 + c

sin v;
1

c
[

r
1 + c

u2

1 + c
� 1]):

For the curve m: u 7! (r(u); s(u)), the equation c2(s + 1
c
)2 � cr2 = 1 holds: In case

c > 0, m is the part of a hyperbola given by s > 0 and the surfaces xc are complete. For
�1 < c < 0, xc is half an ellipsoid.

5 Local results

In this Section we state a series of consequences from the local discussion in Section 4.
As before, x : M ! E3 is a surface of revolution with the representation

x(u1; u2) = (r(u1) cosu2; r(u1) sinu2; s(u1))
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on M ; we assume that the umbilics are nowhere dense. Moreover, let x# : M ! E3 be a
surface with S# = S.
The detailed discussion in Section 4 admits the following implications.

5.1 Let x; x# : M ! E3 be given as before; then there exist coordinates �u1; �u2 in M ,
and di�erentiable functions �r = �r(�u1); �s = �s(�u1), such that x# has the representation
(modulo congruences in E3):

x#(�u1; �u2) = (�r(�u1) cos �u2; �r(�u1) sin �u2; �s(�u1));

in particular, x# again is a surface of revolution.

Proof. Sections 4.2 - 4.6 give a discussion of all possible cases.

5.2 There exists a non-trivial one-parameter family of strongly convex surfaces of revo-
lution xc : M ! E3 having the same Weingarten operator at corresponding points. For
c > 0, the examples in 4.6(c) are complete and admit a bijective orthogonal mapping onto
the plane (x1; x2; 0) � R3.
5.3 There exist non-isometric two-parameter families x = xc;�1 , x

# = x#c;�1 of surfaces
of revolution (see 4.6(b)) with the properties

(i) the surfaces x; x#, have the same Weingarten operator and nowhere dense umbilics;

(ii) the surfaces x; x# have the same Riemannian volume.

Such surfaces necessarily are circular cones.

Proof. Almost everywhere we can introduce the local parameters from 3.1. (ii) implies
1 = detL = �1 � �2 which together with @2�1 = 0 = @1�2 gives �1 = const 6= 1; �2 =
const 6= 1 (as x; x# are assumed to be non-isometric). Then c 6= 0 in (4.1.1), and 4.6(b)
describes the solution.

Remark. The foregoing result in particular implies that both metrics g; g# must be
at. Thus any pair x; x# : M ! E3, where x is a non-at surface of revolution with
nowhere dense umbilics which satis�es (i) and (ii) in 5.3, must be congruent.

5.4 Let x; x# be given as in the beginning of this section. Let p 2 M be a pole for x.
Then p is also a pole for the surface of revolution x#. Using 3.1(i), we have �1 = �2 at
p.

Proof. 4.3(b) or 4.4; other cases are excluded.

5.5 Corollary. Let D � M be a geodesic disc for x (open or closed) with the pole p as
center; then �2 = const on D.

Proof. See the proof of Theorem 4.1 in [S-V-W-W].
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5.6 Corollary. Assume r 6= const and let the disc D from Corollary 5.5 contain a point
(and then a parallel of latitude) with the property r0(p) = 0 (or lim

q!p
r0(q) = 0). Then x

and x# are congruent on D.

Proof. Proposition 4.1 and Corollary 5.5 imply 1 = �1 = �2 and thus g = g#.

6 Global results

In Section 4 of [S-V-W-W] we considered ovaloids of revolution x; x# : M ! E3 with
nowhere dense umbilics and S = S# . We proved that x; x# must be congruent (see
Theorem C). The comments in 5.2 show that, for a rigidity result, one cannot weaken
the assumptions and consider x to be a complete convex surface of revolution instead.
Nevertheless, we can generalize Theorem C as follows.

6.1 Theorem. Let M be a surface of genus zero and x; x# : M ! E3 be immersions.
As before assume that x is a surface of revolution as given in (2.0.1) having nowhere
dense umbilics and r(u1) 6= const on open nonempty sets. Then S = S# implies the
congruence of x and x#.

Proof. Genus(M ) = 0 implies that the curve u1 7! (r(u1); s(u1)) is an arc with r(u1) > 0
for 0 < u1 < � and r(0) = r(�) = 0; thus r0 has a zero between 0 and �, and Corollaries
5.5 and 5.6 imply �1 = �2 = 1 on M .
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