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Surfaces with prescribed Weingarten-Operator
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Abstract

We investigate pairs of surfaces in Fuclidean 3-space with the same Weingarten
operator in case that one surface is given as surface of revolution. Our local and
global results complement global results on ovaloids of revolution from [S-V-W-W].
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Introduction

In [S-V-W-W] we studied global uniqueness results of the following type:

Theorem A. Let z,x#: M — E3 be ovaloids in FEuclidean 3-space with nowhere dense
umbilics and with the property that, at any p € M, the Weingarten operators S, S# and
the spherical volume forms w(1M), w(]]l#) coincide:

S = 5#, w(]]l):w(]]l#).
Then z,z# are congruent.

Corollary B. Let z,2%: M — E3 be ovaloids such that S = S#* and w(lll) = w(]]l#).
If  is analytic then x, z# are congruent up to a reparametrization.

The basic idea for the proof of Theorem A is to consider the unique, I-selfadjoint, positive
definite operator L defined by

1% (v, w) =: 1(Lv, Lw)

and to study its algebraic and analytic properties. A second tool is to use the Codazzi
equations for S = S# in terms of the two Levi-Civita connections V = V(I) and V# =
V(I#) to get relations for the symmetric (1,2) difference tensor (V < V#) between the
connections which finally lead to PDFEs for the operator L.
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If one follows the proof it seems that one might drop the assumption on the volume forms.
We would like to state the following

Conjecture. Let z, 2%#: M — E2 be ovaloids with nowhere dense umbilics and with
S = S# at corresponding points. Then x,x# are congruent.

An affirmative answer to this conjecture would be an extrinsic counterpart to the intrinsic
rigidity result of Cohn-Vossen [COHN-V] which states that two isometric ovaloids in E3
are congruent. In Section 4 of [S-V-W-W] we gave the following partial answer to our
conjecture.

Theorem C. Let x: M — E3 be an ovaloid of revolution with nowhere dense umbilics
and let x# : M — E3 be another ovaloid with S = S# at corresponding points. Then
x, 2% are congruent.

At the end of [S-V-W-W] we showed by an explicit example that there exists a non-
trivial 1-parameter family of complete surfaces of revolution z. : M — E® having the
same Weingarten operator. It is the aim of this paper (Sections 2-4) to give a complete
discussion of the local situation of a pair of surfaces x, 2#: M — E3, where x is a surface
of revolution and where the Weingarten operators coincide for any p € M. In Section 5
we state the local results, in Section 6 we extend Theorem C.

2 Surfaces of revolution

We summarize well known properties of surfaces of revolution which we will need for our
discussion.
Consider a surface of revolution given in terms of parameters (u', u?) by

z(ul,u?) = (r(ut) cos u?, r(ul) sinu?, s(u')), r >0, (2.0.1)
where u! parametrizes the meridians as arc length parameter and u? parametrizes the

parallels of latitude with radius r(u') and r and s are differentiable functions. For a
function f = f(u') we write f’ := df /dul; thus we have

¥ (ut)? 45 (uh)? = 1. (2.0.2)
ul,u? are curvature line parameters for all points with r(u') > 0. In case that the
functions r(ut) > 0, s(u!) are defined for 0 < u! < A and also for u! = 0 or u* = A such
that

r(0) =0, P(0)=1 or r(A)=0, r(A) =&,

we call such points “poles” Pg or Py (u! = 0 or u! = A); for symmetry reasons they
are umbilics. Near a pole, z! = r(ul)cosu?, * = r(ul)sinu? are parameters for the
surface. In general, the parameter u? will be taken modulo 2x, i.e. u? € S'; but there
will be cases where one has to pass to a covering surface by taking u? € R. In every case,

according to the domain of the parameters, there is a manifold M of dimension two such
that (2.0.1) defines an immersion x: M — E3.



It follows by a straightforward computation that the first fundamental form I =: g has
the representation on M\{Px, Ps}:

g11=1, g12=0, goy =17,
and 7 and s satisfy

SOy = (r's" <1”'s")or and S8y = £0s,

where {01, 02} denotes the Gaufl basis associated to the local parameters.
The equation (r')? 4 (s')? = 1 suggests to introduce the function o = o(u') by cos o := 1/
and sin o := s’. The Weingarten operator is represented by the matrix

k’l 0 0'/ 0
S . =
0 ks 0 % sin o
with ki, ko as principal curvatures. The Codazzi equations reduce to the equation

7,,/

k’/z = ?(k’l C}kz), (COd)
while the Gauf} integrability condition reads

"+ Kr=0. (GauB)

3 Pairs of surfaces with the same Weingarten opera-
tor

In the beginning of this section we recall some local results from [S-V-W-W]. For a
moment, let M be a connected, oriented C'*°-manifold of dimension two; later again,
we will restrict to M as given in Section 2. Let z,2#: M — E2 be a pair of surfaces
with first fundamental forms g, g# and associated Levi-Civita connections V := V(g),
V# := V(g#) and Weingarten operators S = S#. We have the following facts from
section 2 in [S-V-W-W].

3.1 Facts.
(1) There exists a unique g-self-adjoint, positive definite operator L such that
g% (u,v) = g(Lu, Lv) (3.1.1)

for tangent vectors u,v. Denote the positive eigenvalue functions of L by A1, Ao,
they are continuous on M and, if A1 # Aa, differentiable.

(ii) The operator L and the Weingarten operator S = S# commute.



(iii) If z, 2% admit a common curvature line parametrization on an open set U C M,
then the eigendirections of S are eigendirections of L, and we have the following
local matriz representations:

g gin O ey Mg 0
0 g2 0 Agos
A 0 k 0

L ' , s=g#.| "
0 /\2 0 kZ

(iv) If A1, Aq are differentiable, their partial derivatives in terms of curvature line pa-
rameters satisfy

82A1 == 0 == 61A2.

These equations are consequences of the Codazzi equations for S = S# in terms of
YV and V# resp.; they are an essential tool for our discussion below.

3.2 Codazzi equations. In curvature line parameters and with associated Gaufl basis
{01, 02}, the Codazzi equations for « read:

2 82]471 = @62 log(gll)(/ﬁ @k’z),

2 81]472 = 81 log(gzz)(/ﬁ <:>]<72)

4 The local discussion

Let z: M — E3 be a surface of revolution as given in Section 2 and z#: M — E3 a
second surface with the same parameter domain M. Let U C M be open, connected and
assume that = is without umbilics on /. Then we can apply the parametrization and
matrix representations from 3.1(iii); moreover, A; and As are differentiable on U.

We discuss the consequences of the integrability conditions in terms of the representations
in 3.1(iii). One easily verifies that there is no further information from the Codazzi
equations. The Gaufl equation and K = det S = det S# = K# lead to an ODE which is
crucial for our discussion; see Section 4 in [S-V-W-W].

4.1 Proposition. The functions r = r(u') and 7 := (M) 72 &1 = 7(u') satisfy
1
'+ 57“/7'/ =0;
thus there exists ¢ € R such that
() r =c. (4.1.1)
4.2 Consequences.

(i) If ¢ =0, then r = const or Ay = 1.



(il) If e £ 0, then v’ £ 0 and

||
A= ——— #1.
' (rM?+c¢ #
4.3 Discussion of the case ¢ = 0.
(a) If r =: ro = const then (r')? + (s')? = 1 implies s = u' and x lies on a circular

cylinder
_ 2 SR
z = (rocosu”, rosinu’, u’).

Choosing arbitrary positive functions \i(u'), Ao(u?), the invariants g% and S# are
given by 3.1 (iii); thus the surface ¥ is uniquely determined.

Reparametrize

at ::/ A1 (u)du, u? ::/ Az (v)dv. (4.3.1)
One verifies that the solution x# is given by
x* = (rg cosu?, rosinu?, '),

thus x# is another parametrization of the same circular cylinder and the diffeomor-

phism (ut, u?) w (ul,u?) preserves the Weingarten operator: S = S#.

(b) If Ay = 1 we again reparametrize, using (4.3.1). Analogously to the foregoing we
arriwe at

2* = (r(ut) cosu? r(u')sin(a?), s(u')). (4.3.2)

z#* is a modified parametrization of the same surface of revolution. Again the
diffeomorphism (ul, u?) — (ul, u?) preserves the Weingarten operator.

4.4 Discussion of the case ¢ # 0. For fized ¢, the function Ay is given by 4.2(ii); we
reparametrize x¥ by

ﬂi = IUI /\1(u)du, ﬂz = aIU2 Az(v)dv’ 0<vV14+c=a€eR. (441)

Introduce the functions
—(-1 Lo (1 Lo
7(u;) = ~r(u’) and 5(a'):= = Vi(aA)? ()2 du. (4.4.2)
a a

Choosing the constant a as given in (4.4.1) and using 4.2(ii), we get:

4.5 Proposition. In terms of the coordinates (ul, u?), which both depend on the constant
¢, the surface z# is given by

¥ (at,w?) = (r(a') cosw?, 7(u') sinu?, 5(a'));



in particular, *# is a surface of revolution; moreover S = S# in corresponding points
(ut,u?) = (ul,u?) for any ¢ # 0. x# is also defined for ¢ = 0; the choice Ay = a™! (i.e.

2

u? = u?) yields x¥ = .

4.6 Remark. (a) Recall (#')? < 1 from (2.0.2). According to 4.2(ii) the inequality ¢ # 0
implies Ay # 1, in particular:

(i) ¢ > 0 < A1 < 1; in this case we have A} < ﬁ;

(ii) ¢ < 0 < Ap > 1; in this case we have <l < ¢ and A; > ++c
In both cases we have A1 £ /1 +e¢.
(b) We discuss the special case ¢ # 0, A1 = const # 1 and A; Ay = 1 for (4.1.1). Integrating

(4.1.1), we get r = A\/e(1 @A)~ w! and s = /(1 @A)l (1 +c)A?} u! from

(2.0.2); thus we have a two-parameter family of circular cones

e 2\ sina?, () L2 LE A
Tex, = U PSE (A cosu”, Arsinu”, - ).

For fixed ¢, A1, Aa = AT, (4.4.1) and (4.4.2) yield the corresponding family of cones

1 1 pY:
73#>\ = Au' ;2 (cos u?, sin u?, M)
&M (1+4¢)(1 X)) e

having the same Weingarten operator and the same Riemannian volume form at (u', u?),
but being non-isometric (and thus non-congruent). Especially 2 2 i—z and u? = Yoyl £

ul since \; £ /1 +c.

(c) In [S-V-W-W] we illustrated Proposition 4.5 by the example of the elliptic paraboloid
1

z(u,v) = (ucos v, usinwv, §u2)

having the same Weingarten operator as any surface of the one-parameter family of
strongly convex surfaces of revolution

2

)= ( U U . 1[ 14 U
= (———=cosv, ——sin v, — ¢

Vi4ec Vi+e c 1+e¢
For the curve m: u ~ (r(u),s(u)), the equation ¢*(s + %)2 <er? = 1 holds: In case
¢ > 0, m is the part of a hyperbola given by s > 0 and the surfaces z. are complete. For
Sl < e <0, 2. 1s half an ellipsoid.

ze(u,v &1]).

5 Local results

In this Section we state a series of consequences from the local discussion in Section 4.
As before, : M — E3 is a surface of revolution with the representation

z(ut,u?) = (r(ut) cosu?, r(ul)sinu?, s(u'))



on M; we assume that the umbilics are nowhere dense. Moreover, let z#: M — E3 be a
surface with S# = .
The detailed discussion in Section 4 admits the following implications.

5.1 Let x,2%: M — E3 be given as before; then there exist coordinates u',u” in M,
and differentiable functions 7 = 7(u'), 5 = 5(u'), such that x# has the representation
(modulo congruences in E3):

o# (@', u?) = (7(a") cos u?, F(a') sin @®, 5(@"));

in particular, z# again is a surface of revolution.
Proof. Sections 4.2 - 4.6 give a discussion of all possible cases. |

5.2 There exists a non-trivial one-parameter family of strongly convex surfaces of revo-
lution x,: M — E> having the same Weingarten operator at corresponding points. For
¢ > 0, the examples in 4.6(c) are complete and admit a bijective orthogonal mapping onto
the plane (z*, 2%, 0) C R3.

5.3 There emst non-isometric two-parameter famalies x = . x,, z# = xf&Al of surfaces
:

of revolution (see 4.6(b) )} with the properties

(i) the surfaces x,z#, have the same Weingarten operator and nowhere dense umbilics;

(ii) the surfaces x,x# have the same Riemannian volume.
Such surfaces necessarily are circular cones.

Proof. Almost everywhere we can introduce the local parameters from 3.1. (ii) implies
1 = det L = Ay - Ay which together with 92A1 = 0 = 01A2 gives Ay = const £ 1, 2 =
const # 1 (as =, z# are assumed to be non-isometric). Then ¢ # 0 in (4.1.1), and 4.6(b)
describes the solution. |

Remark. The foregoing result in particular implies that both metrics ¢, g% must be
flat. Thus any pair z,2#: M — E2, where z is a non-flat surface of revolution with
nowhere dense umbilics which satisfies (i) and (ii) in 5.3, must be congruent.

5.4 Let x,x# be given as in the beginning of this section. Let p € M be a pole for x.
Then p is also a pole for the surface of revolution x#. Using 3.1(i), we have Ay = Ay at

p.
Proof. 4.3(b) or 4.4; other cases are excluded. O

5.5 Corollary. Let D C M be a geodesic disc for x (open or closed) with the pole p as
center; then Ay = const on D.

Proof. See the proof of Theorem 4.1 in [S-V-W-W]. O



5.6 Corollary. Assume r # const and let the disc D from Corollary 5.5 contain a point
(and then a parallel of latitude) with the property v'(p) = 0 (or lim v'(¢) = 0). Then =
a—p

and x# are congruent on D.

Proof. Proposition 4.1 and Corollary 5.5 imply 1 = A; = A; and thus g = ¢#. |

6 Global results

In Section 4 of [S-V-W-W] we considered ovaloids of revolution z,z#: M — E3 with
nowhere dense umbilics and S = S#. We proved that z,z# must be congruent (see
Theorem C). The comments in 5.2 show that, for a rigidity result, one cannot weaken
the assumptions and consider # to be a complete convex surface of revolution instead.
Nevertheless, we can generalize Theorem C as follows.

6.1 Theorem. Let M be a surface of genus zero and x,x#: M — E2 be immersions.
As before assume that x is a surface of revolution as given in (2.0.1) having nowhere
dense umbilics and r(u') # const on open nonempty sets. Then S = S# implies the
congruence of  and z#.

Proof. Genus(M) = 0 implies that the curve u! — (r(ul), s(u!)) is an arc with r(u!) > 0
for 0 < u! < A and r(0) = r(A) = 0; thus ' has a zero between 0 and A, and Corollaries
5.5 and 5.6 imply A\ = Ay =1 on M. O
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