186 research outputs found

    Influence of the electronic polymorphism of Ni on the classification and design of high entropy alloys

    Get PDF
    According to a recent Hume-Rothery approach, the electron concentration, e/a, and the average radius can be used to identify the domain of stability of HEAs and to estimate the phases that may occur in the alloy. The present study investigates the influence of the electronic polymorphism of nickel on the efficiency of the classification and on the design of HEAs for magnetic applications. Many different compositions were used, based on 4 to 7 elements out of a total 13 different elements (Co, Cr, Fe, Ni, Al, Cu, Pd, Ti, Mn, V, Nb, Sn, Ru). Phases have been determined by X-ray and neutron diffraction as well as in some cases high energy X-ray diffraction. The e/a for the constituent elements is calculated according to Massalski. The two polymorphic electronic structure of nickel, namely (e/a)Ni = 1 or (e/a)Ni = 2 are considered. The average e/a for the alloy is calculated assuming a solid solution case. The electronic structure [Ar] 3d9 4s1 seems to be more appropriate for the classification of HEAs. Based on a Self-organising Map predictions are made for the average magnetic moment at saturation for this electronic structure of Ni. Non-saturated values and data from the literature are compared with the predictions. The consequences of such results when modelling the structure and properties of Ni containing HEAs are presented, in particular the consideration of the shape and transformation of the Brillouin zone

    Temperature and time dependent structure of the molten Ni81P19 alloy by neutron diffraction

    Get PDF
    The temperature and time dependent structure of molten NiP alloy of eutectic composition has been studied by neutron diffraction. Ni particles were found to exist in the melt at temperatures at least up to about 150 degrees above liquidus. The amount varies reversibly as temperature increases but decays slowly with time. Remarkably, particles still exist even after that the melt has been kept more than 30 h at different temperatures in the molten state. The static structure factor and the pair distribution function obtained at 1050 °C are presented

    Effect of Heat Treatment of a Melt on the Structure and Properties of the Corresponding Crystalline Ingots or Castings

    Full text link
    Abstract: The modern concepts of the structure of liquid metals and alloys are considered. Several types of microinhomogeneity and microheterogeneity are shown to exist in liquid metal solutions. Their structural state changes as a result of variations in composition, history, temperature, and pressure or the influence of various external actions. Upon subsequent cooling at an appropriate rate, these changes can persist up to liquidus and affect the structure and properties of the solidified alloy. The main attention is paid to the influence of the heating temperature of a liquid metal. For aluminum-based alloys, the possibility of developing the optimum heat-treatment conditions for melting using the results of studying the structure and properties of melts has been shown. This optimized heat treatment of melts is shown to be an effective method to improve the quality of alloys. © 2020, Pleiades Publishing, Ltd

    Comment on "Atomic jumps in quasiperiodic Al72.6_{72.6}Ni10.5_{10.5}Co16.9_{16.9} and related crystalline material"

    Full text link
    We disagree with a number of statements by Dolinsek et al. about the specificity of phason dynamics in quasicrystals (QCs).Comment: 2 pages, 0 figures, submitted to Physical Review

    Multi-phase nature of sintered vs. arc-melted CrxAlFeCoNi high entropy alloys - experimental and theoretical study

    Get PDF
    High entropy CrxAlFeCoNi alloys with x = 0, 0.5, 1.0 and 1.5 were synthesized using arc-melting and sintering preparation techniques. Three crystal structures (fcc, bcc and σ) were observed using XRD technique, while EDX measurements showed the presence of up to three chemically different phases (FeCr-rich phase with fcc structure, AlNi-rich phase with bcc structure and Cr-rich phase with bcc and/or σ structures). The reasons for the observed phase coexistence were addressed to total energy electronic structure calculations using KKR-CPA method accounting for chemical disorder effects. Such theoretical analysis confirmed that the multi-phase system was energetically more favorable than the single-phase one. Furthermore, DSC measurements allowed to identify two phase transitions in melted samples, unlike sintered ones due to high-temperature nitrogen corrosion. This process turned out to be highly selective, resulting in the formation of the scales consisting of AlnNm–phases at the cost of total Al loss in the HEA alloy

    Structure of some CoCrFeNi and CoCrFeNiPd multicomponent HEA alloys by diffraction techniques

    Get PDF
    The structure of CoCrFeyNi (y = 0, 0.8 and 1.2) and CoCrFeNi-Pdx (x = 0.0, 0.5, 0.8, 1.0, 1.2 and 1.5) High Entropy Alloys has been investigated by neutron and standard X-ray as well as by high-energy X-ray diffraction techniques. The alloys were produced by arc melting and afterwards heat treated under several different conditions. It has been concluded that the CoCrFeNi alloy in as-cast condition is, contrary to what is claimed in the literature, not single-phase but consists of at least two different phases, both of fcc type. The difference in lattice constant between the two phases is close to 0.001 Å. Diffraction patterns measured by X-ray and neutron diffraction have shown that the structure of the alloy is not affected by 3 h heat treatment up to 1100 °C. Changing the amount of Fe has no drastic effect on alloy structure. The Pd-containing alloys have also all been found not to be single-phase but to consist of at least four different phases, all being of fcc type. The lattice constants for all phases increase with Pd content. The relative amounts of the different phases depend on Pd concentration. Furthermore, heat treatments of 3 h duration at different temperatures have a significant effect on the alloy phase composition. It is suggested that HEAs should be considered as multicomponent alloys presenting “simple” diffraction patterns, e.g. consisting of one or several lattices of fcc, hcp or bcc type with very close lattice parameters

    Structural transitions and nonmonotonic relaxation processes in liquid metals

    Full text link
    Structural transitions in melts as well as their dynamics are considered. It is supposed that liquid represents the solution of relatively stable solid-like locally favored structures (LFS) in the surrounding of disordered normal-liquid structures. Within the framework of this approach the step changes of liquid Co viscosity are considered as liquid-liquid transitions. It is supposed that this sort of transitions represents the cooperative medium-range bond ordering, and corresponds to the transition of the "Newtonian fluid" to the "structured fluid". It is shown that relaxation processes with oscillating-like time behavior (ω∌10−2\omega \sim 10^{-2}~s−1s^{-1}) of viscosity are possibly close to this point

    Investigation into the magnetic properties of CoFeNiCryCux alloys

    Get PDF
    The search for cheap, corrosion-resistant, thermally-mechanically stable functional magnetic materials, including soft magnetic and magneto-caloric materials has led to research focused on high entropy alloys (HEAs). Previous research shows that alloying elements with negative enthalpies of mixing can facilitate a second-order phase transition. On the other side of the spectrum, compositional segregation cause by positive enthalpy of mixing alloying additions (such as Cu) may also be used to tune magnetic properties. This paper studies the structural, magnetic and magneto-caloric effect of the FCC alloys CoFeNiCryCux (x = 0.0, 0.5, 1.0 and 1.5, y = 0.0, 0.8 and 1.0) to tune these properties with Cu and Cr alloying. Scanning electron microscopy of the compositions show nanoparticles forming within the grains as the Cu concentration increases. Cr addition to CoFeNiCu1.0 has a larger effect on the magnetic and magneto-caloric properties compared to the Cu addition to CoFeNiCr1.0. The addition of Cu (x = 0.5) to CoFeNiCr1.0 improved both the saturation magnetisation and Curie temperature; addition of Cr (y = 1.0) to CoFeNiCu1.0 decreased the Curie temperature by 900 K. All alloys were determined to have a second-order phase transition around their Curie temperature. The refrigerant capacity at 2 T was found to be similar to existing HEAs, although the Curie temperatures were lower than room temperature. Based on this data the CoFeNiCr0.8Cu composition was fabricated to increase the Curie temperature towards 300 K to explore these HEAs as new candidates for room temperature magneto-caloric applications. The fabricated composition showed Curie temperature, saturation magnetisation, and refrigerant capacity increasing with the small reduction in Cr content

    Primary brain T-cell lymphoma of the lymphoblastic type presenting as altered mental status

    Get PDF
    The authors present a case of a 56-year-old man with altered mental status. Magnetic resonance imaging (MRI) of the brain revealed non-enhancing abnormalities on T2 and FLAIR imaging in the brainstem, cerebellum, and cerebrum. Immunohistochemisty demonstrated precursor T-cell lymphoblastic lymphoma. After treatment with methotrexate, he improved clinically without focal sensorimotor deficits and with improving orientation. MRI showed almost complete resolution of brainstem and cerebral lesions. To the authors’ knowledge, there are only five previous reports of primary central nervous system T-cell lymphoblastic lymphoma. Since treatable, it deserves consideration in patients with altered mental status and imaging abnormalities that include diffuse, non-enhancing changes with increased signal on T2-weighted images

    Scandium-based hexagonally-closed packed multi-component alloys

    Get PDF
    Since their early development, High-Entropy Alloys have fueled the investigation of exotic metal combinations. Here, we present a strategy for the rational design of a library for multi-component alloys based on six hcp-structured metals. Seven five- and six-component equimolar alloys based on Co, Gd, Y, Sc, Ti and Zr were prepared via induction melting and characterized by PXRD, SEM–EDX and Vickers hardness. They all present ternary hexagonal phases (ScTiZr or GdScY) co-existing with one or more cubic phases and intermetallic compounds. Both ScTiZr and GdScY appear promising as the starting point for new single-phase High-Entropy Alloys families
    • 

    corecore