613 research outputs found

    Acute Hyperglycemia Worsens Hepatic Ischemia/Reperfusion Injury in Rats

    Get PDF
    Acute hyperglycemia is known to worsen ischemia/reperfusion (I/R) injury following myocardial infarction and stroke. We investigated whether acute hyperglycemia worsens injury and amplifies the inflammatory response evoked by hepatic I/R. Rats were pretreated with an intraperitoneal injection of 25% glucose or 0.9% sodium chloride (10 ml/kg BW). Subsequently, rats underwent partial (70%) hepatic ischemia for 45 min. After 4 h of reperfusion, hepatic injury, oxidative stress, inflammation, and heat shock protein expression were assessed. Liver injury was increased in the hyperglycemic group with alanine aminotransferase (ALT) and aspartate aminotransferease (AST) serum concentrations of 7,832 ± 3,374 and 10,677 ± 4,110 U/L compared to 3,245 ± 2,009 and 5,386 ± 3,393 U/L (p < 0.05 vs. control). Hyperglycemic I/R was associated with increased liver nitrotyrosine concentrations and increased neutrophil infiltration. I/R upregulated the protective heat shock proteins HSP32 and HSP70 in control animals, but this protective mechanism was inhibited by hyperglycemia: HSP32 expression decreased from 1.97 ± 0.89 (control) to 0.46 ± 0.13 (hyperglycemia), HSP70 expression decreased from 18.99 ± 11.55 (control) to 3.22 ± 0.56 (hyperglycemia), (expression normalized to sham, both p < 0.05 vs. control I/R). Acute hyperglycemia worsens hepatic I/R injury by amplifying oxidative stress and the inflammatory response to I/R. The increase in injury is associated with a downregulation of the protective heat shock proteins HSP32 and HSP70

    Elucidating the structural composition of a Fe-N-C catalyst by nuclear and electron resonance techniques

    Get PDF
    Fe–N–C catalysts are very promising materials for fuel cells and metal–air batteries. This work gives fundamental insights into the structural composition of an Fe–N–C catalyst and highlights the importance of an in‐depth characterization. By nuclear‐ and electron‐resonance techniques, we are able to show that even after mild pyrolysis and acid leaching, the catalyst contains considerable fractions of α‐iron and, surprisingly, iron oxide. Our work makes it questionable to what extent FeN4 sites can be present in Fe–N–C catalysts prepared by pyrolysis at 900 °C and above. The simulation of the iron partial density of phonon states enables the identification of three FeN4 species in our catalyst, one of them comprising a sixfold coordination with end‐on bonded oxygen as one of the axial ligands

    Resummed B -> X_u l nu Decay Distributions to Next-to-Leading Order

    Full text link
    We perform factorization of the most general distribution in semileptonic B -> X_u decays and we resum the threshold logarithms to next-to-leading order. From this (triple-differential) distribution, any other distribution is obtained by integration. As an application of our method, we derive simple analytical expressions for a few distributions, resummed to leading approximation. It is shown that the shape function can be directly determined by measuring the distribution in m_X^2/E_X^2, not in m_X^2/m_B^2. We compute the resummed hadron energy spectrum, which has a ``Sudakov shoulder'', and we show how the distribution in the singular region is related to the shape function. We also present an improved formula for the photon spectrum in B->X_s gamma which includes soft-gluon resummation and non-leading operators in the effective hamiltonian. We explicitly show that the same non-perturbative function - namely the shape function - controls the non-perturbative effects in all the distributions in the semi-leptonic and in the rare decay.Comment: LaTex file, 19 pages, 3 postscript figures; minor changes, some typos correcte

    Two-point function of strangeness-carrying vector-currents in two-loop Chiral Perturbation Theory

    Get PDF
    We calculate the correlator between two external vector-currents having the quantum-numbers of a charged kaon. We give the renormalized expression to two loops in standard chiral perturbation theory in the isospin limit, which, as a physical result, is finite and scale-independent. Applications include a low energy theorem, valid at two loop order, of a flavor breaking combination of vector current correlators as well as a determination of the phenomenologically relevant finite O(p6)O(p^6)-counterterm combination QVQ_V by means of inverse moment finite energy sum rules. This determination is less sensitive to isospin-breaking effects than previous attempts.Comment: 24 pages, revtex, 4 figures, 2 tables, revised version, one ref. adde

    Increased Seroreactivity to Glioma-Expressed Antigen 2 in Brain Tumor Patients under Radiation

    Get PDF
    Background: Surgery and radiation are the mainstays of therapy for human gliomas that are the most common primary brain tumors. Most recently, cell culture and animal studies provided the first convincing evidence that radiation not only eliminates tumor cells, but also modulates the immune response and likely improves anti-tumor immunotherapy. Methology/Pricipal Findings: We present an in vivo study that analyzes the effects of radiation on the immune response in tumor patients. As readout system, we utilized the reactivity of glioma patients ’ sera against antigen GLEA2 as the most frequent antigen immunogenic in glioblastoma patients. We established an ELISA assay to analyze reactivity of 24 glioblastoma patients over a period of several months. As control we used 30 sera from healthy donors as well as 30 sera from lung cancer patients. We compared the course of GLEA2 seroreactivity at different times prior, during and after radiation. The GLEA2 seroreactivity was increased by the time of surgery, decreased after surgery, increased again under radiation, and slightly decreased after radiation. Conclusions/Significance: Our results provide in vivo evidence for an increased antibody response against tumor antigens under radiation. Antigens that become immunogenic with an increased antibody response as result of radiation can serv

    Helicity Analysis of Semileptonic Hyperon Decays Including Lepton Mass Effects

    Full text link
    Using the helicity method we derive complete formulas for the joint angular decay distributions occurring in semileptonic hyperon decays including lepton mass and polarization effects. Compared to the traditional covariant calculation the helicity method allows one to organize the calculation of the angular decay distributions in a very compact and efficient way. In the helicity method the angular analysis is of cascade type, i.e. each decay in the decay chain is analyzed in the respective rest system of that particle. Such an approach is ideally suited as input for a Monte Carlo event generation program. As a specific example we take the decay Ξ0Σ++l+νˉl\Xi^0 \to \Sigma^+ + l^- + \bar{\nu}_l (l=e,μl^-=e^-, \mu^-) followed by the nonleptonic decay Σ+p+π0\Sigma^+ \to p + \pi^0 for which we show a few examples of decay distributions which are generated from a Monte Carlo program based on the formulas presented in this paper. All the results of this paper are also applicable to the semileptonic and nonleptonic decays of ground state charm and bottom baryons, and to the decays of the top quark.Comment: Published version. 40 pages, 11 figures included in the text. Typos corrected, comments added, references added and update

    Precise Prediction for M_W in the MSSM

    Full text link
    We present the currently most accurate evaluation of the W boson mass, M_W, in the Minimal Supersymmetric Standard Model (MSSM). The full complex phase dependence at the one-loop level, all available MSSM two-loop corrections as well as the full Standard Model result have been included. We analyse the impact of the different sectors of the MSSM at the one-loop level with a particular emphasis on the effect of the complex phases. We discuss the prediction for M_W based on all known higher-order contributions in representative MSSM scenarios. Furthermore we obtain an estimate of the remaining theoretical uncertainty from unknown higher-order corrections.Comment: 38 pages, 25 figures. Minor corrections, additional reference

    Curvature of Double-Membrane Organelles Generated by Changes in Membrane Size and Composition

    Get PDF
    Transient double-membrane organelles are key players in cellular processes such as autophagy, reproduction, and viral infection. These organelles are formed by the bending and closure of flat, double-membrane sheets. Proteins are believed to be important in these morphological transitions but the underlying mechanism of curvature generation is poorly understood. Here, we describe a novel mechanism for this curvature generation which depends primarily on three membrane properties: the lateral size of the double-membrane sheets, the molecular composition of their highly curved rims, and a possible asymmetry between the two flat faces of the sheets. This mechanism is evolutionary advantageous since it does not require active processes and is readily available even when resources within the cell are restricted as during starvation, which can induce autophagy and sporulation. We identify pathways for protein-assisted regulation of curvature generation, organelle size, direction of bending, and morphology. Our theory also provides a mechanism for the stabilization of large double-membrane sheet-like structures found in the endoplasmic reticulum and in the Golgi cisternae

    Improved W boson mass measurement with the D0 detector

    Get PDF
    We have measured the W boson mass using the D0 detector and a data sample of 82 pb^-1 from the Tevatron collider. This measurement used W -> e nu decays, where the electron is close to a boundary of a central electromagnetic calorimeter module. Such 'edge' electrons have not been used in any previous D0 analysis, and represent a 14% increase in the W boson sample size. For these electrons, new response and resolution parameters are determined, and revised backgrounds and underlying event energy flow measurements are made. When the current measurement is combined with previous D0 W boson mass measurements, we obtain M_W = 80.483 +/- 0.084 GeV. The 8% improvement from the previous D0 measurement is primarily due to the improved determination of the response parameters for non-edge electrons using the sample of Z bosons with non-edge and edge electrons.Comment: submitted to Phys. Rev. D; 20 pages, 18 figures, 9 table
    corecore