254 research outputs found

    Foundation of Fractional Langevin Equation: Harmonization of a Many Body Problem

    Full text link
    In this study we derive a single-particle equation of motion, from first-principles, starting out with a microscopic description of a tracer particle in a one-dimensional many-particle system with a general two-body interaction potential. Using a new harmonization technique, we show that the resulting dynamical equation belongs to the class of fractional Langevin equations, a stochastic framework which has been proposed in a large body of works as a means of describing anomalous dynamics. Our work sheds light on the fundamental assumptions of these phenomenological models.Comment: 8 pages, 2 figures, REVTeX, revised with 4 appendices added, to appear in Physical Review E

    The Iterative Signature Algorithm for the analysis of large scale gene expression data

    Full text link
    We present a new approach for the analysis of genome-wide expression data. Our method is designed to overcome the limitations of traditional techniques, when applied to large-scale data. Rather than alloting each gene to a single cluster, we assign both genes and conditions to context-dependent and potentially overlapping transcription modules. We provide a rigorous definition of a transcription module as the object to be retrieved from the expression data. An efficient algorithm, that searches for the modules encoded in the data by iteratively refining sets of genes and conditions until they match this definition, is established. Each iteration involves a linear map, induced by the normalized expression matrix, followed by the application of a threshold function. We argue that our method is in fact a generalization of Singular Value Decomposition, which corresponds to the special case where no threshold is applied. We show analytically that for noisy expression data our approach leads to better classification due to the implementation of the threshold. This result is confirmed by numerical analyses based on in-silico expression data. We discuss briefly results obtained by applying our algorithm to expression data from the yeast S. cerevisiae.Comment: Latex, 36 pages, 8 figure

    Chemotaxis When Bacteria Remember: Drift versus Diffusion

    Get PDF
    {\sl Escherichia coli} ({\sl E. coli}) bacteria govern their trajectories by switching between running and tumbling modes as a function of the nutrient concentration they experienced in the past. At short time one observes a drift of the bacterial population, while at long time one observes accumulation in high-nutrient regions. Recent work has viewed chemotaxis as a compromise between drift toward favorable regions and accumulation in favorable regions. A number of earlier studies assume that a bacterium resets its memory at tumbles -- a fact not borne out by experiment -- and make use of approximate coarse-grained descriptions. Here, we revisit the problem of chemotaxis without resorting to any memory resets. We find that when bacteria respond to the environment in a non-adaptive manner, chemotaxis is generally dominated by diffusion, whereas when bacteria respond in an adaptive manner, chemotaxis is dominated by a bias in the motion. In the adaptive case, favorable drift occurs together with favorable accumulation. We derive our results from detailed simulations and a variety of analytical arguments. In particular, we introduce a new coarse-grained description of chemotaxis as biased diffusion, and we discuss the way it departs from older coarse-grained descriptions.Comment: Revised version, journal reference adde

    Fractional transport equations for Levy stable processes

    Full text link
    The influence functional method of Feynman and Vernon is used to obtain a quantum master equation for a Brownian system subjected to a Levy stable random force. The corresponding classical transport equations for the Wigner function are then derived, both in the limit of weak and strong friction. These are fractional extensions of the Klein-Kramers and the Smoluchowski equations. It is shown that the fractional character acquired by the position in the Smoluchowski equation follows from the fractional character of the momentum in the Klein-Kramers equation. Connections among fractional transport equations recently proposed are clarified.Comment: 4 page

    Scaling and Asymptotic Scaling in the SU(2) Gauge Theory

    Get PDF
    We determine the critical couplings for the deconfinement phase transition in SU(2)SU(2) gauge theory on Nτ×Nσ3N_\tau \times N_\sigma^3 lattices with Nτ=8N_\tau = 8 and 16 and NσN_\sigma varying between 16 and 48. A comparison with string tension data shows scaling of the ratio Tc/σT_c / \sqrt{\sigma} in the entire coupling regime β=2.302.75\beta =2.30-2.75, while the individual quantities still exhibit large scaling violations. We find Tc/σ=0.69(2)T_c / \sqrt{\sigma}=0.69(2). We also discuss in detail the extrapolation of Tc/LambdaMˉSˉT_c / Lambda_{\rm{\bar{M} \bar{S}}} and σ/LambdaMˉSˉ\sqrt{\sigma} / Lambda_{\rm{\bar{M}\bar{S}}} to the continuum limit. Our result, which is consistent with the above ratio, is Tc/LambdaMˉSˉ=1.23(11)T_c / Lambda_{\rm{\bar{M}\bar{S}}} = 1.23(11) and σ/LambdaMˉSˉ=1.79(12)\sqrt{\sigma} / Lambda_{\rm{\bar{M}\bar{S}}} = 1.79(12). We also comment upon corresponding results for SU(3)SU(3) gauge theory and four flavour QCD.Comment: 27 pages with 9 postscript figures included. Plain TeX file (needed macros are included). BI-TP 92-26, FSU-SCRI-92-103, HLRZ-92-39 (Quote of UKQCD string tension, and accordingly Figs. 5 and 7a, plus a few typo's corrected.

    Photon Statistics; Nonlinear Spectroscopy of Single Quantum Systems

    Full text link
    A unified description of multitime correlation functions, nonlinear response functions, and quantum measurements is developed using a common generating function which allows a direct comparison of their information content. A general formal expression for photon counting statistics from single quantum objects is derived in terms of Liouville space correlation functions of the material system by making a single assumption that spontaneous emission is described by a master equation

    Synchronization and clustering of synthetic genetic networks: A role for cis-regulatory modules

    Full text link
    The effect of signal integration through cis-regulatory modules (CRMs) on synchronization and clustering of populations of two-component genetic oscillators coupled by quorum sensing is in detail investigated. We find that the CRMs play an important role in achieving synchronization and clustering. For this, we investigate 6 possible cis-regulatory input functions (CRIFs) with AND, OR, ANDN, ORN, XOR, and EQU types of responses in two possible kinds of cell-to-cell communications: activator-regulated communication (i.e., the autoinducer regulates the activator) and repressor-regulated communication (i.e., the autoinducer regulates the repressor). Both theoretical analysis and numerical simulation show that different CRMs drive fundamentally different cellular patterns, such as complete synchronization, various cluster-balanced states and several cluster-nonbalanced states.Comment: 30 pages, 8 figure

    Asmparts: assembly of biological model parts

    Get PDF
    We propose a new computational tool to produce models of biological systems by assembling models from biological parts. Our software not only takes advantage of modularity, but it also enforces standardisation in part characterisation by considering a model of each part. We have used model parts in SBML to design transcriptional networks. Our software is open source, it works in linux and windows platforms, and it could be used to automatically produce models in a server. Our tool not only facilitates model design, but it will also help to promote the establishment of a registry of model parts

    Evolution of Robustness to Noise and Mutation in Gene Expression Dynamics

    Get PDF
    Phenotype of biological systems needs to be robust against mutation in order to sustain themselves between generations. On the other hand, phenotype of an individual also needs to be robust against fluctuations of both internal and external origins that are encountered during growth and development. Is there a relationship between these two types of robustness, one during a single generation and the other during evolution? Could stochasticity in gene expression have any relevance to the evolution of these robustness? Robustness can be defined by the sharpness of the distribution of phenotype; the variance of phenotype distribution due to genetic variation gives a measure of `genetic robustness' while that of isogenic individuals gives a measure of `developmental robustness'. Through simulations of a simple stochastic gene expression network that undergoes mutation and selection, we show that in order for the network to acquire both types of robustness, the phenotypic variance induced by mutations must be smaller than that observed in an isogenic population. As the latter originates from noise in gene expression, this signifies that the genetic robustness evolves only when the noise strength in gene expression is larger than some threshold. In such a case, the two variances decrease throughout the evolutionary time course, indicating increase in robustness. The results reveal how noise that cells encounter during growth and development shapes networks' robustness to stochasticity in gene expression, which in turn shapes networks' robustness to mutation. The condition for evolution of robustness as well as relationship between genetic and developmental robustness is derived through the variance of phenotypic fluctuations, which are measurable experimentally.Comment: 25 page

    Sensory Measurements: Coordination and Standardization

    Get PDF
    Do sensory measurements deserve the label of “measurement”? We argue that they do. They fit with an epistemological view of measurement held in current philosophy of science, and they face the same kinds of epistemological challenges as physical measurements do: the problem of coordination and the problem of standardization. These problems are addressed through the process of “epistemic iteration,” for all measurements. We also argue for distinguishing the problem of standardization from the problem of coordination. To exemplify our claims, we draw on olfactory performance tests, especially studies linking olfactory decline to neurodegenerative disorders
    corecore