slides

Synchronization and clustering of synthetic genetic networks: A role for cis-regulatory modules

Abstract

The effect of signal integration through cis-regulatory modules (CRMs) on synchronization and clustering of populations of two-component genetic oscillators coupled by quorum sensing is in detail investigated. We find that the CRMs play an important role in achieving synchronization and clustering. For this, we investigate 6 possible cis-regulatory input functions (CRIFs) with AND, OR, ANDN, ORN, XOR, and EQU types of responses in two possible kinds of cell-to-cell communications: activator-regulated communication (i.e., the autoinducer regulates the activator) and repressor-regulated communication (i.e., the autoinducer regulates the repressor). Both theoretical analysis and numerical simulation show that different CRMs drive fundamentally different cellular patterns, such as complete synchronization, various cluster-balanced states and several cluster-nonbalanced states.Comment: 30 pages, 8 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 16/02/2019