5,071 research outputs found

    Computational coarse graining of a randomly forced 1-D Burgers equation

    Full text link
    We explore a computational approach to coarse graining the evolution of the large-scale features of a randomly forced Burgers equation in one spatial dimension. The long term evolution of the solution energy spectrum appears self-similar in time. We demonstrate coarse projective integration and coarse dynamic renormalization as tools that accelerate the extraction of macroscopic information (integration in time, self-similar shapes, and nontrivial dynamic exponents) from short bursts of appropriately initialized direct simulation. These procedures solve numerically an effective evolution equation for the energy spectrum without ever deriving this equation in closed form.Comment: 21 pages, 7 figure

    Electronic structure and chemical bonding in Ti2AlC investigated by soft x-ray emission spectroscopy

    Full text link
    The electronic structure of the nanolaminated transition metal carbide Ti2AlC has been investigated by bulk-sensitive soft x-ray emission spectroscopy. The measured Ti L, C K and Al L emission spectra are compared with calculated spectra using ab initio density-functional theory including dipole matrix elements. The detailed investigation of the electronic structure and chemical bonding provides increased understanding of the physical properties of this type of nanolaminates. Three different types of bond regions are identified; the relatively weak Ti 3d - Al 3p hybridization 1 eV below the Fermi level, and the Ti 3d - C 2p and Ti 3d - C 2s hybridizations which are stronger and deeper in energy are observed around 2.5 eV and 10 eV below the Fermi level, respectively. A strongly modified spectral shape of the 3s final states in comparison to pure Al is detected for the buried Al monolayers indirectly reflecting the Ti 3d - Al 3p hybridization. The differences between the electronic and crystal structures of Ti2AlC, Ti3AlC2 and TiC are discussed in relation to the number of Al layers per Ti layer in the two former systems and the corresponding change of the unusual materials properties.Comment: 14 pages, 7 figures; PACS:78.70.En, 71.15.Mb, 71.20.-

    Electronic structure and chemical bonding in Ti4SiC3 investigated by soft x-ray emission spectroscopy and first principle theory

    Full text link
    The electronic structure in the new transition metal carbide Ti4SiC3 has been investigated by bulk-sensitive soft x-ray emission spectroscopy and compared to the well-studied Ti3SiC2 and TiC systems. The measured high-resolution Ti L, C K and Si L x-ray emission spectra are discussed with ab initio calculations based on density-functional theory including core-to-valence dipole matrix elements. The detailed investigations of the Ti-C and Ti-Si chemical bonds provide increased understanding of the physical properties of these nanolaminates. A strongly modified spectral shape is detected for the buried Si monolayers due to Si 3p hybridization with the Ti 3d orbitals. As a result of relaxation of the crystal structure and the charge-transfer from Ti (and Si) to C, the strength of the Ti-C covalent bond is increased. The differences between the electronic and crystal structures of Ti4SiC3 and Ti3SiC2 are discussed in relation to the number of Si layers per Ti layer in the two systems and the corresponding change of materials properties.Comment: 12 pages, 7 figures, 1 tabl

    Using network-flow techniques to solve an optimization problem from surface-physics

    Full text link
    The solid-on-solid model provides a commonly used framework for the description of surfaces. In the last years it has been extended in order to investigate the effect of defects in the bulk on the roughness of the surface. The determination of the ground state of this model leads to a combinatorial problem, which is reduced to an uncapacitated, convex minimum-circulation problem. We will show that the successive shortest path algorithm solves the problem in polynomial time.Comment: 8 Pages LaTeX, using Elsevier preprint style (macros included

    A Component Based Heuristic Search Method with Evolutionary Eliminations

    Get PDF
    Nurse rostering is a complex scheduling problem that affects hospital personnel on a daily basis all over the world. This paper presents a new component-based approach with evolutionary eliminations, for a nurse scheduling problem arising at a major UK hospital. The main idea behind this technique is to decompose a schedule into its components (i.e. the allocated shift pattern of each nurse), and then to implement two evolutionary elimination strategies mimicking natural selection and natural mutation process on these components respectively to iteratively deliver better schedules. The worthiness of all components in the schedule has to be continuously demonstrated in order for them to remain there. This demonstration employs an evaluation function which evaluates how well each component contributes towards the final objective. Two elimination steps are then applied: the first elimination eliminates a number of components that are deemed not worthy to stay in the current schedule; the second elimination may also throw out, with a low level of probability, some worthy components. The eliminated components are replenished with new ones using a set of constructive heuristics using local optimality criteria. Computational results using 52 data instances demonstrate the applicability of the proposed approach in solving real-world problems.Comment: 27 pages, 4 figure

    ICTs and Farm Women: Access, Use and Impact

    Get PDF
    The ICTs in recent years have witnessed major changes and are emerging as a powerful tool for accelerating agricultural growth in a developing country like India. There has been a rapid growth in the lCT sector since the late 1980s and the use of ICT has dramatically expanded since the 1990s. Simultaneously the Indian agriculture is moving towards feminisation and the role of women in agricultural growth and development has been increasing considerably. Though women's contribution in food production, food processing leading to eventual export of agricultural production has been well documented but not fully recognized they face greater constraints than men farmers (Chand et al .. 2012). Women farmers have been reported to be 20-30 per cent less productive than men (FAO, 2011). The less productivity of women is attributed to lack of access to resources including land, finance and technology.....

    Electronic structure investigation of Ti3AlC2, Ti3SiC2, and Ti3GeC2 by soft-X-ray emission spectroscopy

    Full text link
    The electronic structures of epitaxially grown films of Ti3AlC2, Ti3SiC2 and Ti3GeC2 have been investigated by bulk-sensitive soft X-ray emission spectroscopy. The measured high-resolution Ti L, C K, Al L, Si L and Ge M emission spectra are compared with ab initio density-functional theory including core-to-valence dipole matrix elements. A qualitative agreement between experiment and theory is obtained. A weak covalent Ti-Al bond is manifested by a pronounced shoulder in the Ti L-emission of Ti3AlC2. As Al is replaced with Si or Ge, the shoulder disappears. For the buried Al and Si-layers, strongly hybridized spectral shapes are detected in Ti3AlC2 and Ti3SiC2, respectively. As a result of relaxation of the crystal structure and the increased charge-transfer from Ti to C, the Ti-C bonding is strengthened. The differences between the electronic structures are discussed in relation to the bonding in the nanolaminates and the corresponding change of materials properties.Comment: 15 pages, 8 figure

    Application of a minimum cost flow algorithm to the three-dimensional gauge glass model with screening

    Full text link
    We study the three-dimensional gauge glass model in the limit of strong screening by using a minimum cost flow algorithm, enabling us to obtain EXACT ground states for systems of linear size L<=48. By calculating the domain-wall energy, we obtain the stiffness exponent theta = -0.95+/-0.03, indicating the absence of a finite temperature phase transition, and the thermal exponent nu=1.05+/-0.03. We discuss the sensitivity of the ground state with respect to small perturbations of the disorder and determine the overlap length, which is characterized by the chaos exponent zeta=3.9+/-0.2, implying strong chaos.Comment: 4 pages RevTeX, 2 eps-figures include

    Ground state properties of fluxlines in a disordered environment

    Full text link
    A new numerical method to calculate exact ground states of multi-fluxline systems with quenched disorder is presented, which is based on the minimum cost flow algorithm from combinatorial optimization. We discuss several models that can be studied with this method including their specific implementations, physically relevant observables and results: 1) the N-line model with N fluxlines (or directed polymers) in a d-dimensional environment with point and/or columnar disorder and hard or soft core repulsion; 2) the vortex glass model for a disordered superconductor in the strong screening limit and 3) the Sine-Gordon model with random pase shifts in the strong coupling limit.Comment: 4 pages RevTeX, 3 eps-figures include

    Approximating the Nonlinear Newsvendor and Single-Item Stochastic Lot-Sizing Problems When Data Is Given by an Oracle

    Get PDF
    The single-item stochastic lot-sizing problem is to find an inventory replenishment policy in the presence of discrete stochastic demands under periodic review and finite time horizon. A closely related problem is the single-period newsvendor model. It is well known that the newsvendor problem admits a closed formula for the optimal order quantity whenever the revenue and salvage values are linear increasing functions and the procurement (ordering) cost is fixed plus linear. The optimal policy for the single-item lot-sizing model is also well known under similar assumptions. In this paper we show that the classical (single-period) newsvendor model with fixed plus linear ordering cost cannot be approximated to any degree of accuracy when either the demand distribution or the cost functions are given by an oracle. We provide a fully polynomial time approximation scheme for the nonlinear single-item stochastic lot-sizing problem, when demand distribution is given by an oracle, procurement costs are provided as nondecreasing oracles, holding/backlogging/disposal costs are linear, and lead time is positive. Similar results exist for the nonlinear newsvendor problem. These approximation schemes are designed by extending the technique of K-approximation sets and functions.National Science Foundation (U.S.) (Contract CMMI-0758069)United States. Office of Naval Research (Grant N000141110056
    • 

    corecore