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Abstract

The single-item stochastic lot-sizing problem is to find an inventory replenishment policy in the presence
of discrete stochastic demands under periodic review and finite time horizon. A closely related problem
is the single-period newsvendor model. It is well known that the newsvendor problem admits a closed
formula for the optimal order quantity whenever the revenue and salvage values are linear increasing
functions and the procurement (ordering) cost is fixed plus linear. The optimal policy for the single-item
lot-sizing model is also well known under similar assumptions.

In this paper we show that the classical (single-period) newsvendor model with fixed plus linear
ordering cost cannot be approximated to any degree of accuracy when either the demand distribution
or the cost functions are given by an oracle. We provide a fully polynomial time approximation scheme
for the nonlinear single-item stochastic lot-sizing problem, when demand distribution is given by an
oracle, procurement costs are provided as nondecreasing oracles, holding/backlogging/disposal costs are
linear, and lead time is positive. Similar results exist for the nonlinear newsvendor problem. These
approximation schemes are designed by extending the technique of K-approximation sets and functions.

1 Introduction

Inventory control plays a significant role in operations management. In a typical inventory system, a
facility, e.g., a retail outlet or a warehouse, maintains an inventory of a particular product. Since demand
is random, the facility only has information regarding its distribution. The facility’s objective is to decide
at what point to reorder a new batch of products, and how much to order so as to minimize the expected
cost of ordering and holding inventory. In many such systems, ordering costs consist of two components: a
fixed amount, independent of the size of the order, e.g., the cost of sending a vehicle from the supplier to the
facility, and a variable amount which is linearly dependent on the number of products ordered. Inventory
holding cost, typically linear with the amount of inventory kept at the end of each time period, is incurred
at every time period.

Newsvendor problem (NV). A fundamental single-period problem in stochastic inventory theory is the
newsvendor problem. A vendor needs to decide how many units x of an item with short life cycle (such
as newspapers, fashion items and electrical circuits) to order based on the known demand distribution, the
costs of ordering, and the revenues from sales and salvage. Let the cost of ordering x units of the item in
the beginning of the period be c(x), the revenue of selling x units throughout the period be r(x), and the
salvage value of returning x units in the end of the period be s(x), where all these functions are nonnegative
and nondecreasing. The stochastic demand D for the item is a discrete random variable with support that
is contained in [0, . . . ,M ] for a given M , and is described by a cumulative distribution function (CDF)
F (y) = FD(y) = Prob(D ≤ y). Having x units of inventory in the beginning of the period, the vendor
decides on the number y of items to order in order to maximize her profit, i.e.,

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/10128794?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


z(x) = max
y

ED[r(min(D,x+ y)) + s(x+ y −D)− c(y)], (1)

where the expectation is with respect to the random variable D. Arrow, Harris and Marschak [AHM51]
showed some 60 years ago that if all costs and revenues are linear, i.e., c(x) = cx, r(x) = rx, and s(x) = sx
(clearly, these cost parameters must satisfy r > c > s, otherwise the problem can trivially be solved), then
this problem permits a simple solution: Determine the maximum value S such that Prob(D ≤ S) ≤ r−c

r−s and
order enough (i.e., max{0, S−x}) to bring the stock level to S, the so-called base stock policy. See also page
120 in [SCB05] or any basic book on inventory management. Interest in the NV has greatly increased over
the past 50 years. This interest stems from the fact that the problem serves as a building block in many
inventory models as well as its relevance to practice.

Nonlinear newsvendor problem (NNV). Assuming that the ordering cost c(·), revenue r(·) and salvage
value s(·) are all linear functions in the number of units is often not realistic, e.g., when the ordering cost
includes a setup cost and quantity discounts. Indeed, during the last half century a large body of work has
been focused on the structure of the optimal policy as a function of the initial inventory level, under various
assumptions. In the following paragraph we give a few examples. Please refer to the excellent extensive
survey of Porteus [Por90] and the references therein for more detail.

We first address the case of convex revenues and holding costs1. It is well known that then a base stock
policy is optimal. In the case of quadratic revenues and holding costs, base stock policy is known to be
optimal, where S equals the mean demand. If in addition there are order setup costs, then (s, S) policy is
optimal, i.e., one orders enough to bring the stock level up to S if the initial stock level is bellow s, and does
not order otherwise. When there are minimum and maximum order quantities and piecewise-linear order
costs then the optimal order level is a piecewise-linear function of the initial stock level. If the order costs
are convex, then generalized base stock policy is optimal, i.e., the stock level after ordering is an increasing
function of the initial stock level, and the optimal amount ordered is a decreasing function of the initial stock
level; if in addition the ordering cost is also piecewise-linear, a finite generalized base stock policy is optimal,
i.e., there is a finite number of distinct base stock levels. In the case of concave order costs, a generalized (s, S)
policy is optimal, i.e., the level y(x) up to which one orders, as a function of the initial inventory level x has
the following form: there are two parameters, s and S, such that y(x)=0 if x ≥ s, and y(z) ≥ y(x) ≥ S ≥ s
for z ≤ x ≤ s. When x ≤ s, then a positive order is made. The lower the initial level of inventory, the higher
the level of inventory after ordering. If, on the other hand, the order costs are piecewise-linear and concave,
a finite generalized (s, S) policy is optimal, i.e., there exist s1 ≤ s2 ≤ . . . ≤ sn ≤ Sn ≤ . . . ≤ S2 ≤ S1 such
that the optimal policy, as a function of the initial inventory level x is to order up to S1 if x < s1, order up
to S2 if s1 ≤ x < s2, and so on, order up to Sn if sn−1 ≤ x < sn, and do not order otherwise. We note that
in the general case where all these functions are arbitrarily nondecreasing, an optimal policy does not have
any structure. Perhaps for this reason there is almost no research about the general case.

Single-item stochastic lot-sizing problem (SLS). We also address the single-item stochastic economic
lot-sizing problem. This problem can be described as follows. Let T be the length of the planning horizon. At
the beginning of each period t–e.g., each week or every month–the inventory of a certain item at a warehouse
is reviewed, the inventory level is noted, and an order of xt units is placed. If xt > 0, the order arrives after
L time periods, i.e., there is a lead time of L time periods. Just after the replenishment decision is made, the
demand Dt is observed. The demand is either immediately satisfied or (partially) backlogged, depending on
the inventory on hand. Backlogging is represented as a negative inventory level. Last, a disposal decision is
made. The holding/backloogging cost is accounted for at the end of the time period. The random variables
D1, . . . , DT are independent, and are not necessarily identically distributed. We assume without loss of
generality that there is no demand in the last L + 1 time periods, i.e., DT = . . . = DT−L = 0.) We
summarize below the functions and variables involved (t = 1 . . . , T ):

1for the ease of presentation we refer to the negative of the salvage value, −s(·), as holding cost.
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xt : procurement quantity in time period t (if L > 0 then x0 = . . . = x1−L = 0);
It : inventory level at the beginning of time period t, just before the arrival of an order;
ct(x) : procurement cost in time period t, given an order of size x > 0;
yt : disposal quantity in time period t;
dt(y) : disposal cost in time period t, given a disposal of size y > 0;
ht(x) : holding cost in time period t, given positive inventory level x at the end of the time period;
bt(x) : backlogging cost in time period t, given negative inventory level −x at the end of the time period.

(For ease of notation we define ct(0) = dt(0) = bt(0) = ht(0) = 0 and ht(x) = bt(−x) for x < 0). We
assume functions ct(·), dt(·), ht(·), bt(·) are all nonnegative rational valued, and are computed in polynomial
time. We denote by D the random vector of demands, i.e., D = (D1, . . . , DT ). The procurement and
disposal cost functions ct(·), dt(·) are nondecreasing nonnegative over Z+, and the holding cost function ht(·)
is nonnegative and unimodal over Z and attains a minimum at x = 0.
The objective is to minimize the total expected cost. The problem can be formulated as finding

z∗(I1) = min
xt,yt

ED

(
T∑
t=1

ct(xt) + dt(yt) + ht(It + xt−L − yt −Dt)

)
, (2)

where the expectation is taken with respect to the joint distribution of D1, . . . , Dt, and subject to the system
dynamics

It+1 = It + xt−L − yt −Dt, t = 1, ..., T. (3)

The action space requirement is xt, yt ∈ Z+ for t = 1, ..., T and the initial inventory level is I1. The boundary
condition is that the values of hT (x), bT (x) are very high for positive x. Since the demand in the last L+ 1
periods is zero, this condition implies that any optimal solution will end time period T with zero inventory.

In the case of fixed plus linear procurement costs and linear holding and backlogging costs it is well known
that the optimal policy is (st, St), i.e., in time period t, if the observed inventory level is below the reorder
level st, then an order is placed so that the inventory level will reach the base-stock level St, otherwise
nothing is done. See [SCB05, Por02, Zip00] for an in-depth coverage of the topic. We note that while the
structure of the optimal policy is known, it is #P-hard to calculate the reorder points and base-stock levels
even in the special case where the cost functions are all linear [HKM+09]. The hardness proof of [HKM+09]
relies on the hardness of evaluating CDF of convolutions of discrete random variables. We also note that
the NP-hardness of the deterministic lot-sizing problem, proved some 3 decades ago by Florian, Lenstra and
Rinnoy Kan [FLR80] (even for the special case of zero holding costs, fixed plus linear production costs and
capacity limits, i.e., ct(x) = δx>0c

′
t + c′′t x, c′t, c

′′
t ∈ Z+ for production quantity x up to the capacity limit

for period t, and ct(x) = M for x above that capacity limit and a sufficiently large integer M), implies
NP-hardness of SLS as well. (If in the deterministic lot-sizing problem backlogging is not allowed, we set
the backlogging costs in the corresponding SLS problem to be arbitrary large.)

Inventory systems when information is given as an oracle. To the best of our knowledge all past
work about the newsvendor problem assumed that either all functions are given to the vendor explicitly as
formulae, or that additional structure about the revenue, salvage and order cost functions is known. But this
is not always a realistic assumption. For example, in some cases, the supplier does not reveal the order cost
function c(·) to the vendor, and instead gives quotes c(x) for every query x submitted by the vendor. This
scenario applies, for example, when the vendor purchases in the spot market, as well as situations where
orders are placed over the Internet. For instance, suppose the vendor is a tourism agency that books a block
of seats in a specific flight. It is not realistic to assume that the airline provides the vendor with the function
c(·), revealing in this way the number of seats it allocates in each of the various booking classes. We believe
the aforementioned quotes model is more appropriate in these settings, i.e., the various functions are given
to the vendor as “black boxes”, or oracle functions.

The same holds for demand forecast. Indeed, firms typically maintain a database that includes historical
customer demand information and update it with daily or weekly point of sale (POS) data. In such an
environment, there may not be a function representing the demand distribution. Rather, the database
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provides the probability that demand (or more precisely, sales) is smaller than a certain value, for any value
inspected by the user.

Another reason to use oracle functions for representing non-linear cost functions is that oracle functions
do not restrict the non-linear function to be given in any particular form. Thus, a fully polynomial time
approximation scheme (FPTAS) that relies on an oracle function will be an FPTAS for any function that
can be computed in polynomial time. Oracle functions also permit strong negative results, such as proving
that an exponential number of steps are required to solve a problem.

An alternative inventory control approach. In this paper we show that the optimal expected profit of
the NNV model cannot be approximated to within any given constant factor. This begs the question, what
can the firm do to identify effective inventory control policies? Motivated by common firm behavior in the
market, we propose to focus on two dimensions when maximizing business performance: expected profit and
profit-to-cost ratio. For example, the expected profit-to-cost ratio of the newsvendor problem when having
x units of inventory in the beginning of the period and ordering y units is

ν(y) =
ED[r(min(D,x+ y)) + s(x+ y −D)]

c(y)
− 1.

We claim that a reasonable strategy is to look for a policy that maximizes expected profit while providing
a given minimum (expected) profit-to-cost ratio. Indeed, this was the case for IBM when the firm decided
to sell its PC business in 2004 to Lenovo–it was not because of lack of profit; rather, it was because of low
profit margins (low relative to margins in other IBM businesses). In other words, many businesses avoid
investments if the profit-to-cost ratio is close to 0 or negative. Rather, they only invest if the profit-to-cost
ratio is strictly positive, and possibly more than some target level ν. (The profit-to-cost ratio is often referred
to in the business literature as return on investment or ROI. This ratio has a 1-to-1 correspondence with
the profit margin, i.e, the profit-to-revenue ratio.)

This idea is nicely illustrated in Figure 1 where we present expected profit for the linear NV model as a
function of order quantity (A) or of profit-to-cost ratio (B). As the reader observes, expected profit decreases
with profit-to-cost ratios. Thus, a minimum requirement on (expected) profit-to-cost ratio corresponds to a
specific level of expected profit. Of course, the order quantity maximizing expected profit is not the same as
the order quantity maximizing expected profit-to-cost ratio–which in the case of the linear NV is equal to
ordering a single unit. In Figure 1A, the maximum expected profit is $29,200 and is achieved by ordering
32,020 units thus returning an expected profit-to-cost ratio of 9.13%. However, ordering only 29,000 units
achieves an expected profit of $28,130 (which is 97% of maximal expected profit) but increases expected
profit-to-cost ratio to 9.7%: this is a cut in the gap between maximal profit-to-cost ratio (10%) and the one
associated with optimal profit (9.13%) by 66%.

A: Expected profit as function of order quantity
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B: Expected profit as function of profit-to-cost ratio

0

5

10

15

20

25

30

9.00% 9.20% 9.40% 9.60% 9.80% 10.00%

Profit-to-cost ratio

E
xp

ec
te

d
 p

ro
fi

t 
in

 $
K

Figure 1: Expected profit for NV with unit cost $10, unit revenue $11, and D ∼ N(µ = 40K,σ = 6K)
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Following this discussion, we suggest that firms plot their expected profit as a function of expected profit-
to-cost ratio (Figure 1B) and apply it to determine their strategy. This approach allows us to overcome the
challenge associated with the inability to approximate the optimal expected profit of the NNV model as
explained below.

Our results. We establish that the non-linear version of the NV problem is provably hard, even in the
case that the revenues are linear, and the costs are fixed plus linear. In fact, we show that determining
whether there is a solution with positive profit is hard. In such a case, there can be no polynomial time
approximation algorithm with a bounded error.

We show that even though the linear newsvendor problem is easy to solve–i.e., it is easy to compute the
optimal order quantity–calculating the expected profit takes an exponential number of queries in the worst
case under the assumption that the demand probability distribution is given as an oracle. This demonstrates
that the gap between the complexity of finding the argument (i.e., order quantity) of the optimal solution
and finding the value (i.e., profit) of this solution is exponential. The proof of this result also implies that
the newsvendor problem with fixed plus linear costs requires exponential number of queries to determine
the optimal order quantity and optimal expected profit. The reverse is also true. That is, if the demand
distribution is given explicitly, but at least one of the cost (or revenue) functions is given as an oracle, then
the problem is intractable.

Not only inventory systems when information is given as an oracle are intractable, we also show that these
models cannot be approximated to within any given constant. We can still give positive results by following
the alternative approach discussed above. Specifically, we develop an FPTAS for NNV that approximates
the function plotted in Figure 1.B: For every positive ε, δ and ν our algorithm determines a solution with
profit-to-cost ratio of at least ν, and with profit at least 1

1+ε times the profit of an optimal solution that has
profit-to-cost ratio of at least ν(1 + δ). The running time is polynomial in the size of the problem and in
1/ε + 1/δ + 1/ν. Our algorithm approximates all non-linear newsvendor problems so long as the purchase
costs are monotonically non-decreasing in the amount purchased, and the revenues are monotonically non-
decreasing in the amount purchased. We show that in general it is not possible to set either ε, δ or ν to
0.

Using a similar approach we give an FPTAS for SLS under a wide range of assumptions on the data.
We assume that ordering, holding, backlogging and disposal costs are all nonnegative and monotonically
non-decreasing. We also need a somewhat technical (but realistic) assumption on the cost of carrying an
excess unit of inventory (i.e., on its holding and disposal costs). This allows us the relaxation of the convexity
assumption made in [HKM+09]. In addition, it enables us to give FPTASs for various SLS models with a
positive lead-time.

Relevance to existing literature. To the best of our knowledge, no FPTAS has been reported in the
literature for NNV. Recently, [CKP06, CNC10] have developed FPTASs for the deterministic capacitated
lot-sizing problem. [HKM+09] provide an FPTAS for the special case of SLS where the procurement cost
is convex. To the best of our knowledge, no FPTAS is known for SLS even for the special case where
the procurement cost is fixed plus linear. Moreover, to the best of our knowledge no approximations with
worst-case guarantees for SLS with a positive lead-time exist in the literature. Last, we note in passing
that approximations for stochastic inventory control problems with bounded error are not common, see
[LPRS07, LRST08, HKM+09] for a few examples.

Technique used. To develop the approximation schemes for NNV and SLS we build upon and extend
the technique of K-approximation sets and functions, introduced by Halman et al. [HKM+09]. For every
constant K > 1, the idea is to approximate a monotone nonnegative function f within a ratio K, by a
piecewise-constant function f̃ with “small” number of break-points (i.e., polynomial in the size of the input
and logK(max f/min f)). The K-approximation piecewise-constant function f̃ can be minimized efficiently,
e.g., by enumerating over all the break-points that belong to the K-approximation set.

Our contribution. This paper makes four contributions. First, we provide new hardness results for
finding the maximum expected profit for various NNV models or approximating these values. Second, we
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provide FPTASs for NNV models in the case that the profit-to-cost ratio is bounded away from 0. In fact,
this is the first paper to relate expected profit to profit-to-cost ratio as an approach to suggest an effective
strategy. Third, this is the first paper to focus on inventory models where the data is given in a form
of a query to an oracle. Our use of oracle functions makes our approximations schemes valid for a wide
range of cost functions, revenue functions, and distributions. Fourth, we provide more general conditions
that guarantee the existence of an FPTAS. Indeed, in [HKL+08] Halman et al. develop a framework for
deriving FPTASs for certain stochastic dynamic programs with additive objective functions consisting of
monotone or convex nonnegative functions (e.g., minimizing costs or maximizing revenues). Here we extend
it to problems with additive functions of monotone or convex (not necessarily nonnegative) functions, thus
enabling us to approximate maximization of profits. We also extend the aforementioned framework to deal
with implicitly-defined random variables. Thus, instead of requiring the random variables to be represented
explicitly as sequences of values and probabilities, the extended framework can deal with implicitly-defined
random variables such as Poisson or Normal distributions.

Organization of the paper. In Section 2 we present the hardness results. In Section 3 we first review K-
approximation sets and functions and then give new results about approximations of cumulative distribution
functions and subtraction of functions. Using the material given in this section we provide an FPTAS
for NNV in Section 4. In Section 5 we review nonincreasing stochastic dynamic programming, which we
use in Section 6 to develop FPTASs for various models of SLS with disposal. In Section 7 we deal with
several extensions such as SLS with a positive lead time, implicitly-described random variables and non-exact
evaluation of CDF and cost functions. We conclude the paper with a discussion and open problems.

2 Hardness results

In this section we show that NNV is intractable and does not admit a constant-factor approximation algo-
rithm in general. Our hardness results rely on the following trivial observation:

Observation 2.1. Finding a minimum of an arbitrary integer-valued function f : [0, ..., N ]→Z, or even
deciding whether such a minimum realizes in either [1, ..., bN/2c] or [dN/2e, . . . , N ], requires N + 1 queries
in the worst case.

Of course, if we have additional information about the function, the number of queries needed may be
reduced. For example, if the function is monotone, only two queries are needed. If the function is convex,
only O(logN) queries are needed. But if the function is unimodal with a unique minimum (e.g., a function
which is zero everywhere except for one point), the number of queries needed is N .

Theorem 2.2. The following problems regarding the nonlinear newsvendor problem require exponential
number of function evaluations:

1. Deciding whether there exists a profit that is strictly positive, even if the revenue and salvage functions
are linear and the demand is fixed,

2. Deciding whether there exists a profit-to-cost ratio that is strictly positive, even if the revenue and
salvage functions are linear and the demand is fixed,

3. Calculating the expected optimal profit, even if the ordering cost, revenue and salvage functions are all
linear,

4. Calculating the order quantity that maximizes expected profit, even if revenue and salvage functions are
linear and ordering cost is fixed plus linear.

Moreover, none of problems 1, 2 and 4 is approximable within any given constant factor.

Proof. Considering the first two problems, let the fixed demand be D = N , the revenue for each item
sold be 1, the salvage value is 0, and the cost of each item purchased be 1 except items i∗ and i∗ + 1. Item
i∗ costs 0, and item i∗ + 1 costs 2. The index i∗ (which minimizes the function f(x) = cost of item x) is
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unknown to the newsvendor and must be determined by evaluations of f(·). If i∗ ≤ N and if one orders
exactly i∗ items, then one obtains a profit of 1. Otherwise the optimum profit is 0. Observation 2.1 tells us
that deciding whether i∗ ≤ N requires Ω(N) queries in the worst case. Note that these two problems cannot
be approximated to any degree of accuracy in polynomial time.

We next consider the following instance of the linear NV problem. Let the per-unit cost and per-unit
salvage value be identical and equal to 1. Let the per-unit revenue be 2. The support of the demand D
is {0, 1, . . . , N} and its distribution is P (D = i) = 1/N for all indices i = 0, . . . , N but one i∗, for which
P (D = i∗) = 0. Note that the distribution function of D is unimodal with a unique minimum, and that the
input size is O(logN). In this case an optimal policy is to order N units, and the resulting profit is:

E(D) =
N + 1

2
− i∗

N
.

Therefore, computing the expected profit is equivalent to finding i∗, which by Observation 2.1 requires O(N)
queries in the worst case.

We last look at the instance of the NV problem considered above, where the value of N is odd and with
an ordering setup cost of N/2. If i∗ < N/2, then every optimal policy must place an order and results in a
strictly positive expected profit. Otherwise, the optimal policy is to order nothing and it yields zero profit.
This implies that approximating the problem within any constant ratio is equivalent to solving it, i.e., to
deciding whether i∗ is in either [1, ..., bN/2c] or [dN/2e, . . . , N ], which by Observation 2.1 requires O(N)
queries in the worst case.

An alternative to using oracle functions is to require that the non-linear function be computable in
polynomial time by some Turing Machine. This model is slightly less general than the oracle model.

Problem Q.
Instance: A Turing machine M that computes a real-valued function f(x) : [0, . . . , U ]→R in polynomial time
for a given value of x in the domain [0, . . . , U ], and an integer number L.
Question: Is f(x) 6= x for at least one x ≥ L?

Observation 2.3. Problem Q is NP-hard.

Proof. Problem Q is easily shown to be in the class NP. Suppose that we consider integers in binary. For
each binary integer x with exactly n bits (the leading bits may be 0), we associate the following subset of
{1, 2, . . . , n}. SET(x) = {i | the i-th bit of x is 1}.

We carry out a transformation from determining whether there is an independent set of cardinality K on
a graph G = (V,E) with n vertices. Let f(x) = x−1 if SET(x) has at least K vertices and is an independent
set. Otherwise, let f(x) = x. Note that f(x) can be computed in polynomial time. We conclude the proof
by noting that the independent set problem instance has an affirmative answer if and only if Problem Q
with f as described above and U = 2n, L = 0 has a positive answer.

Using the observation above, we get the following result.

Observation 2.4. The problems stated in Theorem 2.2 are all NP-hard whenever all cost functions and the
CDF are all computable in polynomial time.

Proof. We give a proof for the first problem. Proofs for the remaining problems are similar. Let f(x) be
the function defined in the proof of Observation 2.3. Note that f(x) can be computed in polynomial time.
Note also that f(x) is monotonically non-decreasing.

Suppose that the demand is 2n, and the revenue per unit is 1. Under these circumstances, the optimum
profit for the newsvendor problem is 0 or 1 according to whether f(x) = x over [0, . . . , 2n] or not.

Remark: Computing the optimal order quantity of the linear NV is already #P-hard if the population
(i.e., the set of Bernoulli random variables representing the demand of each customer) is subdivided into n
subpopulations and if a piecewise-constant CDF is given for the total demand of each of these subpopulations.
The reason for this is that it is #P-complete to determine the maximum value x such that Prob(Total Demand
≤ x) ≤ d [HKM+09]. So, it does not take much for newsvendor problems to become difficult.
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3 K-approximation sets and functions and calculus of approxima-
tion

Halman et al. [HKM+09] introduced the notions of K-approximation sets and functions explained in the
Introduction. They used these notions in order to solve a single-item inventory control problem. Halman
et al. [HLS09] used these notions in order to give an FPTAS for time-cost tradeoff problems in series-
parallel project networks. Halman et al. [HKL+08] provide a set of general computational rules of K-
approximation functions, which they call the calculus of K-approximation functions, and which we review
below. In addition to developing the calculus of approximation, they develop a framework for deriving
FPTASs for certain stochastic dynamic programs and apply their framework on several basic problems in
inventory control, economics, and finance. In this section we review K-approximation sets and functions,
as well as the calculus of K-approximation functions, and expand the calculus to deal with cumulative
distribution functions and subtraction of functions. To simplify the discussion, we modify Halman et al.’s
definition of the K-approximation function by restricting its domain D to be an interval of integers.

Let K ≥ 1 and let ϕ : D→R+ be a nonnegative function. We say that ϕ̃ : D→R is a K-approximation
function of ϕ (K-approximation of ϕ, in short) if for all x ∈ D we have ϕ(x) ≤ ϕ̃(x) ≤ Kϕ(x). The following
proposition provides a set of general computational rules of K-approximation functions. Its validity follows
directly from the definition of K-approximation functions.

Proposition 3.1 (Calculus of K-approximation Functions [HKL+08]). For i = 1, 2 let Ki ≥ 1, let
ϕi : D→R+ be an arbitrary function over domain D, and let ϕ̃i : D→R be a Ki-approximation of ϕi. Let
ψ1 : D→D, and let α, β ∈ R+. The following properties hold:

1. ϕ1 is a 1-approximation of itself,

2. (linearity of approximation) α+ βϕ̃1 is a K1-approximation of α+ βϕ1,

3. (summation of approximation) ϕ̃1 + ϕ̃2 is a max{K1,K2}-approximation of ϕ1 + ϕ2,

4. (composition of approximation) ϕ̃1(ψ1) is a K1-approximation of ϕ1(ψ1),

5. (minimization of approximation) min{ϕ̃1, ϕ̃2} is a max{K1,K2}-approximation of min{ϕ1, ϕ2},

6. (maximization of approximation) max{ϕ̃1, ϕ̃2} is a max{K1,K2}-approximation of max{ϕ1, ϕ2},

7. (approximation of approximation) If ϕ2 = ϕ̃1 then ϕ̃2 is a K1K2-approximation of ϕ1.

LetK > 1. Let ϕ : [L,U ]→Z+ be a monotone function over the contiguous interval [L,U ] = {L,L+1, . . . , U−
1, U}. (Note that the minimal positive value of ϕ is 1.) We say that an ordered set S = {i1 < · · · < ir} of
integers is a K-approximation set of ϕ if L,U ∈ S ⊆ {L, . . . , U} and for each k = 1 to r− 1, if ik+1 > ik +1,
then ϕ(ik)

K ≤ ϕ(ik+1) ≤ Kϕ(ik).

Lemma 3.2 ([HKL+08]). Let K > 1 and ϕ : [L,U ]→Z+ be a monotone function. There exists a K-approximation
set of ϕ with cardinality O(logK(1 + ϕmax)), where ϕmax = max{ϕ(L), ϕ(U)}. Furthermore, this set can be
constructed in O

(
(1 + τ(ϕ)) logK ϕmax log(U − L + 1)

)
time, where τ(ϕ) is the amount of time required to

evaluate ϕ.

K-approximation sets are very useful for getting succinct approximations for functions that have large
domains:

Theorem 3.3 ([HKL+08]). For i = 1, 2 let Ki > 1, Li ≥ 1 and let ϕi : D→R+ be a function over domain
D. Let ϕ̃i : D→R be a Li-approximation of ϕi. For every fixed x ∈ D, let ψi : D×E→D be a function such
that ϕ̃i(ψi(x, ·)) is monotone over the totally ordered domain E. If Si(x) ⊆ E is a Ki-approximation set of
ϕ̃i(ψi(x, ·)), then

min
y∈S1(x)∪S2(x)

{ϕ̃1(ψ1(x, y)) + ϕ̃2(ψ2(x, y))}

is a max{L1, L2,min{K1L1,K2L2}}-approximation of

min
y∈E
{ϕ1(ψ1(x, y)) + ϕ2(ψ2(x, y))}.
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Halman et al. use K-approximation sets to construct approximation functions in the following way:

Definition 3.4 ([HKM+09]). Let K > 1 and let ϕ : [L,U ]→Z+ be a monotone function. Let S be a K-
approximation set of ϕ. A function ϕ̂ defined as follows is called the approximation of ϕ corresponding to
S. For any integer L ≤ x ≤ U and successive elements ik, ik+1 ∈ S with ik < x ≤ ik+1 let

ϕ̂(x) =
{
ϕ(x) if x ∈ S;
max{ϕ(ik), ϕ(ik+1)} otherwise.

Note that ϕ̂ is a K-approximation of ϕ. Suppose S is computed according to Lemma 3.2. If we calculate
the values of ϕ on S in advance and store them in a sorted array (x, ϕ(x)), then any query for the value of
ϕ̂(x), for any x, can be calculated in O(log |S|) = O(log logK(1 + ϕmax)) time. This is done by performing
binary search over S to find the consecutive elements ik, ik+1 ∈ S such that ik < x ≤ ik+1.

3.1 On approximating cumulative distribution functions

In this subsection we expand the Calculus ofK-approximation to deal with cumulative distribution functions.
One of the assumptions Halman et al. [HKL+08] make in their framework is that the CDF of each random
variable D is given explicitly as a set of ordered pairs (d,Prob(D = d)). In this section we show a way of
using CDFs instead of discrete distributions in the analysis, hence enabling us to handle random variables
with finite support of size exponential in the size of the remaining input (i.e., not containing the description
of the random variables).

LetD be a random variable whose support set consists of nonnegative integers bounded byM , and let F (·)
be its CDF. We assume that we have access to an oracle for F (·). Let ψ(·) be a monotone nondecreasing real-
valued step function with breakpoints at a1 < . . . < an. Let f(·, ·) be a real-valued function, e.g., f(x,D) =
x−D or f(x,D) = min(x,D). We are interested in computing the following function approximately

χ(x) = ED(ψ(f(x,D))) =
M∑
d=0

ψ(f(x, d))Prob(D = d) =
M∑
d=0

ψ(f(x, d)) (F (d)− F (d− 1)) .

It turns out that this becomes easier if one represents ψ(·) in an unusual manner. We represent it as the
sum of 2-step functions ψi(·), where a 2-step function has the property that ψi(x) = 0 for x < ai, and ψi(x)
is constant for x ≥ ai. More specifically, we write

ψ(x) =
n∑
i=1

ψi(x),

where

ψi(x) =
{
ψ(ai)− ψ(ai−1) if x ≥ ai;
0 otherwise,

and where ψ(a0) = 0. It turns out that this representation is very useful for our purposes. Then

χ(x) = ED(ψ(f(x,D))) =
∑M
d=0 ψ(f(x, d))Prob(D = d)

=
∑M
d=0

∑n
i=1 ψi(f(x, d))Prob(D = d)

=
∑n
i=1

(∑M
d=0 ψi(f(x, d))Prob(D = d)

)
=
∑n
i=1(ψ(ai)− ψ(ai−1))Prob(f(x,D) ≥ ai).

(4)

If Prob(f(x,D) ≥ ai) is monotone in x then we get that χ(x) is expressible as the sum of n functions, each of
which is a constant times a monotone function. So, to get an approximated value for χ, we first approximate
Prob(f(x,D) ≥ ai), and then sum the n functions.

Proposition 3.5. Let D be a nonnegative integer-valued random variable and suppose Prob(f(x,D) ≥ ai)
is monotone in x, i = 1, . . . , n. Let ξ : [L, . . . , U ]→Z+ be a nonnegative nondecreasing function. Let

9



K1,K2 ≥ 1, ξ(a0) = 0, and let S = {a1 < . . . < an} be a K1-approximation set of ξ. Finally, let ηi(x)
denote Prob(f(x,D) ≥ ai) and let η̃i(·) be a K2-approximation of ηi(·), i = 1, . . . , n. Then

ξ̃0(x) =
n∑
i=1

(ξ(ai)− ξ(ai−1))η̃i(x)

is a K1K2-approximation of
ED(ξ(f(x,D))).

Moreover, if η̃i(·) are monotone, then so is ξ̃0(·).

Proof. Let ψ be the approximation of ξ corresponding to S (see Definition 3.4) and let χ be defined as
in (4). Then

ED(ξ(f(x,D))) =
M∑
d=0

ξ(f(x, d))Prob(D = d) ≤ χ(x) ≤
n∑
i=1

(ξ(ai)− ξ(ai−1))η̃i(x),

where the first inequality is due to ψ being a K1-approximation of ξ, and the second inequality is due to (4),
η̃i being a K2-approximation of ηi, and since ψ and ξ coincide on S. On the other hand, by using similar
arguments we have

ED(ξ(f(x,D))) =
M∑
d=0

ξ(f(x, d))Prob(D = d) ≥ 1
K1

χ(x) ≥ 1
K1K2

n∑
i=1

(ξ(ai)− ξ(ai−1))η̃i(x).

We conclude the proof by noting that if η̃i are all monotone, then so is ξ̃0.

By applying the above proposition with f(x,D) = x −D and noting that Prob(x −D ≥ ai) = Prob(D ≤
x− ai) = F (x− ai) we get

Corollary 3.6. Let D be a nonnegative integer-valued random variable and let F be its cumulative distribu-
tion function. Let ξ : [L, . . . , U ]→Z+ be a nonnegative nondecreasing function. Let K1,K2 ≥ 1, ξ(a0) = 0,
and let S = {a1 < . . . < an} be a K1-approximation set of ξ. Finally, let F̃ be a K2-approximation of F .
Then

ξ̃1(x) =
n∑
i=1

(ξ(ai)− ξ(ai−1))F̃ (x− ai)

is a K1K2-approximation of
ED(ξ(x−D)).

Moreover, if F̃ (·) is nondecreasing, then so is ξ̃1(·).

We conclude this section by applying Proposition 3.5 with f(x,D) = min(x,D) and noting that Prob(min(x,D) ≥
ai) = Prob(D ≥ ai)δx≥ai = (1 − F (ai − 1))δx≥ai (recall that δA is 1 if the expression A is true and is 0
otherwise) we get

Corollary 3.7. Let D be a nonnegative integer-valued random variable and let F be its cumulative distribu-
tion function. Let ξ : [L, . . . , U ]→Z+ be a nonnegative nondecreasing function. Let K1,K2 ≥ 1, ξ(a0) = 0,
and let S = {a1 < . . . < an} be a K1-approximation set of ξ. Finally, let F̃ c be a K2-approximation of 1−F .
Then

ξ̃2(x) =
n∑
i=1

(ξ(ai)− ξ(ai−1))F̃ c(ai − 1)δx≥ai

is a nondecreasing K1K2-approximation of

ED(ξ(min(x,D))).
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3.2 Subtraction of approximation

In this section we expand the Calculus of K-approximation functions to deal with the substraction of
functions. Let z(x) denote the value of an optimal solution of an optimization problem, starting at an initial
state x, for every initial state x (say, the inventory in the system). If such a function is hard to compute,
one aims at approximating it. Since Halman et al. [HKM+09] deal with a minimization problem, they define
K-approximation functions so that the error is one-sided and is realized by a feasible policy: For every K ≥ 1
they construct a function z̃ that K-approximates z, i.e., z(x) ≤ z̃(x) ≤ Kz(x), for every x. Moreover, for
every initial state x they design a feasible policy P̃ (x) that realizes the value given by z̃. If one draws the
graph of z and z̃, then z̃ lies “above” z. To stress this point we will say that z̃ K-approximates z from above.

If we have a maximization problem on hand, we would like to construct an approximation function z̃ so
that the error is still one-sided, but of the other side. In other words, z̃ is a K-approximation of z from below
if z
K ≤ z̃ ≤ z. Clearly, if z̃ K-approximates z from above then z̃

K K-approximates z from below. Similarly,
if z̃ K-approximates z from below then Kz̃ K-approximates z from above.

All the problems dealt by [HKM+09, HKL+08, HLS09] are either for minimizing costs, or maximizing
revenues. If one wants to maximize profit, i.e., the difference between revenues and costs, having a rule
in the calculus of approximation that deals with subtraction is desirable. Note that such a rule cannot be
analogous to “summation of approximation” (Property 3 in Proposition 3.1): it is easy to see that while the
ratio between ϕ1 + ϕ2 and ϕ̃1 + ϕ̃2 is bounded, it is not necessarily so between ϕ1 − ϕ2 and ϕ̃1 − ϕ̃2 (e.g.,
whenever ϕ1 and ϕ2 are very close to each other). The next easy proposition which we prove in the Appendix
shows that by imposing the restriction that ϕ2 ≤ cϕ1 for any given constant c > 0, the aforementioned ratio
is bounded.

Proposition 3.8 (subtraction of approximation from below). Let ϕi : D→R+ be a nonnegative function
over domain D and Ki ≥ 1 be arbitrary, i = 1, 2. Let ϕ̃1 : D→R+ be a K1-approximation of ϕ1 from
below, and ϕ̃2 : D→R+ be a K2-approximation of ϕ2 from above. Let c < 1

K1K2
be an arbitrary positive real

number. If x ∈ D satisfies ϕ2(x) ≤ cϕ1(x) then (ϕ̃1 − ϕ̃2)(x) is a (1−c)K1
1−cK1K2

-approximation of (ϕ1 − ϕ2)(x)
from below.

Proof. For the ease of presentation let us fix x and write ϕi instead of ϕi(x), for i = 1, 2. From the
definition of K-approximation functions and since ϕ2 ≤ cϕ1 we get that

ϕ1

K1
≤ ϕ̃1 ≤ ϕ1, ϕ2 ≤ ϕ̃2 ≤ K2ϕ2, ϕ2 ≤

c

1− c
(ϕ1 − ϕ2),

so
ϕ̃1 − ϕ̃2 ≤ ϕ1 − ϕ2.

On the other hand,

ϕ̃1 − ϕ̃2 ≥
ϕ1

K1
−K2ϕ2 =

ϕ1 − ϕ2

K1
− K1K2 − 1

K1
ϕ2 ≥

ϕ1 − ϕ2

K1

(
1− c(K1K2 − 1)

1− c

)
=

1− cK1K2

(1− c)K1
(ϕ1 − ϕ2).

We note that whenever ϕ1 represents revenues and ϕ2 represents costs, then the expression ϕ1−ϕ2 represents
profit. In this case c is an upper bound on the cost-to-revenue ratio. This ratio has a 1-to-1 correspondence
with the profit-to-cost ratio ν in the following way:

c =
1

1 + ν
, and ν =

1
c
− 1. (5)

We can also deal with ϕ2 that is not necessarily nonnegative. In this case instead of approximating ϕ2 we
will use it itself. The proof of the proposition below is similar to the proof of Proposition 3.8:

Proposition 3.9 (subtraction of approximation from below). Let ϕ1 : D→R+ be a nonnegative function
over domain D and K1 ≥ 1 be arbitrary. Let ϕ̃1 : D→R+ be a K1-approximation of ϕ1 from below. Let
ϕ2 : D→R be an arbitrary function. Let c < 1

K1
be a nonnegative real number. If x ∈ D satisfies ϕ2(x) ≤ cϕ1

then (ϕ̃1 − ϕ2)(x) is a (1−c)K1
1−cK1

-approximation of (ϕ1 − ϕ2)(x) from below.
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We note that when c = 0 we get that ϕ2(·) ≤ 0, so the proposition above coincides with summation of
approximation in the Calculus of K-approximation Functions.

The following proposition is similar to Proposition 3.9, is intended for getting approximations from above
for minimization problems, and is used for approximating the single-item lot-sizing problem.

Proposition 3.10 (subtraction of approximation from above). Let ϕ1 : D→R+ be a nonnegative function
over domain D and K1 ≥ 1 be arbitrary. Let ϕ̃1 : D→R+ be a K1-approximation of ϕ1 from above. Let
ϕ2 : D→R be an arbitrary function, and let c < 1 be an arbitrary nonnegative real number. If x ∈ D satisfies
ϕ2(x) ≤ cϕ1(x) then ϕ̃1 − ϕ2 is a K1−c

(1−c) -approximation of (ϕ1 − ϕ2)(x) from above.

We next prove the following theorem which is the analogue of Theorem 3.3 for maximization of a difference
of functions.

Theorem 3.11. Let Ki > 1, Li ≥ 1 and let ϕi : D→R+ be a function over domain D, i = 1, 2. Let
ϕ̃1 : D→R be an L1-approximation of ϕ1 from below and ϕ̃2 : D→R be an L2-approximation of ϕ2 from
above. For every fixed x ∈ D, let ψi : D × E→D be a function such that both ϕ̃1(ψ1(x, ·)), ϕ̃2(ψ2(x, ·)) are
monotone in the same direction over a totally ordered domain E. Let Si(x) ⊆ E be a Ki-approximation set
of ϕ̃i(ψi(x, ·)). Let c < 1

K1L1L2
be an arbitrary positive real number. Then for every x ∈ D, the value of

ζ̃(x) = max
y∈S1(x)∪S2(x) | ϕ̃2(ψ2(x,y))≤cK1L1L2ϕ̃1(ψ1(x,y))

{ϕ̃1(ψ1(x, y))− ϕ̃2(ψ2(x, y))} (6)

is at least 1−cK1L1L2
(1−c)K1L1

-times the value of

ζ(x) = max
y∈E | ϕ2(ψ2(x,y))≤cϕ1(ψ1(x,y))

{ϕ1(ψ1(x, y))− ϕ2(ψ2(x, y))}. (7)

Moreover, if y@ is an argmax of ζ̃(x), then

ϕ1(ψ1(x, y@))− ϕ2(ψ2(x, y@)) ≥ ζ(x), and
ϕ2(ψ2(x, y@))
ϕ1(ψ1(x, y@))

≤ cK1L1L2.

Proof. Due to symmetry arguments we can assume without loss of generality that both ϕ̃1(ψ1(x, ·)), ϕ̃2(ψ2(x, ·))
are nondecreasing. Let x be fixed, let y∗ be the minimal argmax of ζ, and let x∗i = ψi(x, y∗), for i = 1, 2.
From the definition of K-approximation functions and since ϕ2(x∗2) ≤ cϕ1(x∗1) we get that

ϕ1

L1
≤ ϕ̃1 ≤ ϕ1, ϕ2 ≤ ϕ̃2 ≤ L2ϕ2, ϕ2(x∗2) ≤

c

1− c
(ϕ1(x∗1)− ϕ2(x∗2)). (8)

By the definition of S1(x) and S2(x), we have that y′ = max{y ≤ y∗ | y ∈ S1(x) ∪ S2(x)} satisfies

ϕ̃1(ψ1(x, y′)) ≥
ϕ̃1(ψ1(x, y∗))

K1
≥ ϕ1(ψ1(x, y∗))

K1L1
=
ϕ1(x∗1)
K1L1

, (9)

where the last inequality is due to (8). Since ϕ̃2(ψ2(x, ·)) is nondecreasing and by using (8) again we get

ϕ̃2(ψ2(x, y′)) ≤ ϕ̃2(ψ2(x, y∗)) ≤ L2ϕ2(ψ2(x, y∗)) = L2ϕ2(x∗2). (10)

We next show that y′ satisfies the constraint of the maximization in (6). Indeed,

ϕ̃2(ψ2(x, y′))
ϕ̃1(ψ1(x, y′))

≤ K1ϕ̃2(x∗2)
ϕ̃1(x∗1)

≤ K1L1L2
ϕ2(x∗2)
ϕ1(x∗1)

≤ cK1L1L2, (11)

where the first inequality is since S1(x) ∪ S2(x) is a K1-approximation set of ϕ̃1(ψ1(x, ·)) and due to the
monotonicity of ϕ̃2(ψ2(x, ·)). The second inequality is due to (8), and the last inequality is due to the
constraint of the maximization in (7). We conclude the first part of the proof by using (8), (9), and (10) to
get

ζ̃(x) ≥ ϕ̃1(ψ1(x, y′))− ϕ̃2(ψ2(x, y′)) ≥ ϕ1(x
∗
1)

K1L1
− L2ϕ2(x∗2) = ϕ1(x

∗
1)−ϕ2(x

∗
2)

K1L1
+ ( 1

K1L1
− L2)ϕ2(x∗2))

≥
(

1
K1L1

+ c(1−K1L1L2)
(1−c)K1L1

)
(ϕ1(x∗1)− ϕ2(x∗2)) = 1−cK1L1L2

(1−c)K1L1
ζ(x).

(12)
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The (exact) value of the approximated solution is

ϕ1(ψ1(x, y@))−ϕ2(ψ2(x, y@) ≥ ϕ̃1(ψ1(x, y@))−ϕ̃2(ψ2(x, y@)) ≥ ϕ̃1(ψ1(x, y′))−ϕ̃2(ψ2(x, y′)) ≥
1− cK1L1L2

(1− c)K1L1
ζ(x),

where the first inequality is due to (8), and the third inequality is due to (12). Moreover, its (exact)
cost-to-revenue ratio is

ϕ2(ψ2(x, y@))
ϕ1(ψ1(x, y@))

≤ ϕ̃2(ψ2(x, y@))
ϕ̃1(ψ1(x, y@))

≤ cK1L1L2,

where the first inequality is due to (8) and the second inequality is since y@ satisfies the constraint of the
maximization in (6).

4 An FPTAS for the nonlinear newsvendor problem

In this section we design a 3-parameter FPTAS for approximating profit functions as follows: Let ν > 0 be
a lower threshold for the profit-to-cost ratio of the solution obtained by the algorithm. Let δ > 0 refer to a
relative deviation of the profit-to-cost ratio of the solution (to be explained in more detail below). Let ε > 0
refer to a relative deviation of the profit. The algorithm produces a solution whose profit-to-cost ratio is at
least ν. Moreover, the profit of this solution is at least as large as 1

1+ε times the maximum profit under the
restriction that the profit-to-cost ratio is at least ν(1 + δ). In other words, the profit is almost as large as
the optimal profit for a slightly perturbed problem. Moreover, the running time is polynomial in the size of
the problem and in 1/ε+ 1/δ + 1/ν. We conclude this section by showing that in general it is not possible
to set either ν, ε or δ to 0.

Theorem 4.1. Let M ∈ Z be an arbitrary positive number and let F (·) be the cumulative distribution
function of a discrete random variable D with support that is contained in [0,M ]. Let ε, δ, ν > 0 be arbi-
trary positive parameters. Let q∗ be the order quantity of a minimal-cost optimal solution of the nonlinear
newsvendor with stochastic demand D and profit-to-cost ratio of at least ν(1 + δ), and let z(q∗) be its value.
Then for every ν, δ, ε > 0 one can compute in O( logM log2 r(M)

min(ε2,δ2)ν2 ) time an approximate solution with order

quantity q′ and expected profit z̃(q′), such that its value satisfies z(q∗) ≥ z̃(q′) ≥ z(q∗)
1+ε and its profit-to-cost

ratio is at least ν.

Remark: It is interesting to note that whenever it is known that there exists an optimal solution with a
profit-to-cost ratio greater than a given constant α > 0, then the above 3-parameter FPTAS collapses into
an “ordinary” FPTAS–with a single parameter ε–by setting, e.g., ν = α/2 and δ = 0.1.

Proof. Let 1 < K < 2 be an arbitrary number (we will fix it soon). For every 0 < ε < 1 we approximate
z(·) in (1) by applying Theorem 3.11 with

ϕ1(t) = ED[r(min(D, t))+s(t−D)], ψ1(x, y) = x+y, ϕ2(t) = c(t), ψ2(x, y) = y, L1 = K1 = K2 = K, L2 = 1.

We note that ϕ1(·) and ϕ2(·) are nondecreasing. We compute for them approximations in the following way.
Since L2 = 1 we take ϕ̃2 = ϕ2 and ϕ̃2(ψ2(x, y)) = c(y), which is nondecreasing. Hence a K-approximation
set S2 for it is well defined. As for ϕ1, by linearity of expectation we decompose it into two functions
ϕ1 = f1 + f2, where

f1(t) = ED[r(min(D, t))], f2(t) = ED[s(t−D)].

Note that both f1 and f2 are nondecreasing. We next approximate f1 from below by applying Corollary 3.7
with ξ = r,K1 = K and K2 = 1. Note that the resulting f̃1 is a nondecreasing K-approximation of f1 from
below. As for f2, we approximate it by applying Corollary 3.6 with ξ = s,K1 = K and K2 = 1, and therefore
the resulted f̃2 is a nondecreasing K-approximation of f2 from below. Let ϕ̃1 = f̃1 + f̃2. By summation of
approximation (third property in Proposition 3.1) we get that ϕ̃1 is a nondecreasing K-approximation of ϕ1

from below. Hence a K-approximation set S1 for it is well defined as well.
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By applying Theorem 3.11 (with K1 = K2 = L1 = K and L2 = 1) we get that the value of the
approximated solution is at least 1−cK2

(1−c)K2 -times the value of the optimal solution z(x), and that the cost-
to-revenue ratio of the approximated solution is at most K2c. We need to fix K and c such that all of the
following statements hold:

1. The profit-to-cost ratio of a minimal-cost optimal solution is at least ν(1 + δ),

2. (regarding a condition in Theorem 3.11) c < 1
K2 ,

3. (regarding the value of the approximated solution) 1−cK2

(1−c)K2 ≥ 1
1+ε ,

4. the profit-to-cost ratio of the approximated solution is at least ν.

In order to satisfy 1, and by using (5), we set 1
c − 1 = ν(1 + δ), hence

c =
1

1 + ν(1 + δ)
.

Note that c < 1. We set

K =

√
1 + ε

1 + cε
=

√
1 +

εν(1 + δ)
1 + ε+ ν(1 + δ)

, (13)

thus statement 2 holds as well. It is easy to check that statement 3 holds for every nonnegative c < 1, and
that statement 4 holds whenever ε ≤ δ.

It remains to analyze the running time of the algorithm. Suppose first that ε ≤ δ. In order to find
an optimal solution, because r(x) ≥ c(x) ≥ s(x), it suffices to set the domain of the functions involved to
be [0,M ]. Also note that the largest value computed throughout the algorithm is r(M). In our algorithm
we compute approximation sets for r, s, c and ϕ̃1. By Lemma 3.2 each of these approximation sets is of
cardinality O(logK r(M)), and is calculated in time O((1 + τf ) logK r(M) logM), where τf is the time
needed to perform a query of the corresponding function. For the ease of presentation we assume the query
time for r, s, c, F is a constant, so the most time-consuming operation is to compute the approximation set
for ϕ̃1, which takes O(log2

K r(M) logM) time, since by Corollaries 3.6 and 3.7 each evaluation of ϕ̃1 takes
O(n) = O(logK r(M)) time. In order to work with logarithm of base 2 we recall that for K = 1 + θ with
0 < θ < 1 we have 1

logK = O( 1
θ ). Due to (13) logK r(M) = O( log r(M)

εν ). If ε > δ we set ε = δ. Therefore the
running time of the algorithm is

O

(
logM log2 r(M)
min(ε2, δ2)ν2

)
.

We conclude this section by showing that Theorem 4.1 is in a sense the strongest one can hope for:

Observation 4.2. One cannot relax the requirement of Theorem 4.1 that each one of ν, ε and δ must be a
strictly positive real number.

Proof. We first show that we cannot have ν = 0. Indeed, considering the example in the proof for the 2
first problems in Theorem 2.2 and running the FPTAS with ν = 0 and ε = δ = 0.1 will result in a decision
whether there exists a positive profit.

We next show that we cannot allow δ = 0. We change the example in the proof for the 2 first problems
in Theorem 2.2 as follows. Let the fixed demand and the cost of each item purchased remain the same,
and the revenue for each item sold be now 2. Note that the profit-to-cost ratio when ordering i∗ units is
i∗+1
i∗−1 ≥ 1 + 2

N−1 and is 100% for any other positive order quantity. In this way, running the FPTAS with
ε = 0.1, δ = 0 and ν = 1 + 1

N will reveal the value of i∗.
Last, we show that we cannot have ε = 0. We change the example in the proof for the 2 first problems in

Theorem 2.2 as follows. Let the fixed demand remain N . Let the revenue for each item be 3 and the salvage
value of each item be 2. Let the cost of each item purchased be 2 except for items i∗ and i∗ + 1. Item i∗

costs 1, and item i∗ + 1 costs 3. While the newsvendor knows that 2N ≥ i∗ > N , the exact value of index i∗
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is unknown to her, and must be determined by function evaluations. The optimal policy is to order N + i∗

(at a cost of 2(N + i∗) − 1), which results in a profit of N + 1. Note that ordering N units yields a profit
of only N . Note also that a minimal-cost optimal solution has profit-to-cost ratio of at least 25%. Hence,
running the FPTAS with ε = 0 and δ = ν = 0.1 determines the value of i∗.

5 Nonincreasing stochastic dynamic programming

In this section we review the model for finite horizon stochastic dynamic programs that is studied by
[HKL+08]. The model has two principal features: an underlying discrete time dynamic system, and a
cost function that is additive over time. The system dynamics are of the form

It+1 = ft(It, xt, Dt), t = 1, . . . , T, (14)

where
t is the discrete time index,
It is the state of the system,
xt is the action or decision to be selected in time period t,
Dt is a discrete random variable,
T is the number of time periods.

The cost function is additive in the sense that the cost incurred at time period t, denoted by gt(It, xt, Dt), is
accumulated over time. Let I1 be the initial state of the system. Given a realization dt of Dt, for t = 1, . . . , T ,
the total cost is

gT+1(IT+1) +
T∑
t=1

gt(It, xt, dt),

where gT+1(IT+1) is the terminal cost incurred at the end of the process. The problem is to find

z∗(I1) = min
x1,...,xT

E

{
gT+1(IT+1) +

T∑
t=1

gt(It, xt, Dt)

}
, (15)

where the expectation is taken with respect to the joint distribution of the random variables involved. The
optimization is over the actions x1, . . . , xT which are selected with the knowledge of the current state.

The state It is an element of a given state space St, the action xt is constrained to take values in a given
action space At(It), and the discrete random variable Dt takes values in a given set Dt. The state space and
the action space are one-dimensional. We state now the well known DP recursion for this model.

Theorem 5.1 (The DP Recursion [Bel57]). For every initial state I1, the optimal cost z∗(I1) of the DP
is equal to z1(I1), where the function z1 is given by the last step of the following recursion, which proceeds
backward from period T to period 1:

zT+1(IT+1) = gT+1(IT+1),

zt(It) = min
xt∈At(It)

EDt {gt(It, xt, Dt) + zt+1(ft(It, xt, Dt))} , t = 1, . . . , T, (16)

where the expectation is taken with respect to the probability distribution of Dt.

The input data of the problem consists of the number of time periods T , the initial state I1, the function
gT+1, and for each time period t = 1, . . . , T , the functions gt and ft, and the discrete random variable
Dt given explicitly as a set of ordered pairs (d,Prob(Dt = d)). Halman et al. assume the following three
conditions hold:

Condition 1. ST+1,St,At(It) ⊂ Z for It ∈ St and t = 1, . . . , T . For any set X among these sets,
log maxx∈X |x + 1| is bounded polynomially by the (binary) input size, and the kth largest element in X
can be identified in constant time for any 1 ≤ k ≤ |X|. Moreover, Dt ⊂ Q for t = 1, . . . , T .
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Condition 2. For every t = 1, . . . , T + 1, the values of function gt are nonnegative rational numbers. In
addition, the logarithm of the ratio between the maximal single-period cost and the maximum of 1 and the
minimal positive single-period cost is polynomially bounded by the (binary) size of the input.

Condition 3 (Nonincreasing DP). gT+1 is nonincreasing. For every t = 1, . . . , T, and fixed d ∈ Dt, ft(·, ·, d)
is nondecreasing in its first variable and is monotone in its second variable, and gt(·, ·, d) is a nonnegative
function monotone in its second variable. Moreover, either zt is nonincreasing for t = 1, . . . , T , or gt(·, ·, d)
is nonincreasing in its first variable and At(I ′) ⊆ At(I) for all I ′, I ∈ St with I ′ ≤ I.

The DP formulation (16) that satisfies Conditions 1-3 is called nonincreasing.

Theorem 5.2 ([HKL+08]). Every stochastic nonincreasing DP admits an FPTAS.

6 Single-item stochastic lot-sizing with disposal

In this section we derive FPTASs for various versions of SLS with disposal by transforming them into
nonincreasing DPs and applying the framework of [HKL+08].

We transform SLS into a nonincreasing DP as follows. We split period t in the original problem into
two periods in the transformed problem, denoted as periods 2t − 1 and 2t. Period 2t − 1 corresponds to
procurement decisions and procurement costs in period t of the original problem. Period 2t corresponds to
disposal decisions and disposal and holding costs in period t of the original problem. While production in
period 2t − 1 in the transformed problem corresponds to procurement in period t of the original problem,
production of −y units in period 2t in the transformed problem corresponds to disposal of y units in period
t of the original problem.

It is convenient to consider the stochastic network flow (SNF) minimization problem corresponding to the
lot-sizing problem as follows. The network G = (V,E) consists of 2T + 1 vertices labeled 0, . . . , 2T . Vertices
1, . . . , 2T are connected in series, and vertex 0 is connected to each of the vertices 1, . . . , 2T . For each
odd-numbered vertex 2t− 1 there is an ingoing edge e0,2t−1 with cost function c0,2t−1(·) = ct(·) representing
production. There is also an ingoing edge e2t,2t−1 and an outgoing edge e2t−1,2t, both connecting to vertex
2t with no cost (i.e., c2t−1,2t(·) = c2t,2t−1(·) = 0). If t > 1, then there is also an ingoing edge e2(t−1),2t−1

with cost function c2(t−1),2t−1(·) = ht−1(·). Each even-numbered vertex 2t > 0 has an outgoing edge e2t,0
with cost function c2t,0(·) = dt(·) representing disposal. If t < T , then it has also an ingoing edge e2t+1,2t

with cost function c2t+1,2t(·) = bt(·) representing backlogging, see Figure 2.

D1 D2 DT

-ΣDi

...0

0

0

0

0

0

dTd2d1 c2c1 cT

h1 h2 hT-1

b1 b2 bT-1
0 0 0
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v1 v2 v3 v4 v2T-1 v2T

Figure 2: Transforming SLS to SNF

Let

A(I) = (A0, . . . , A2T+1) = (I −
T∑
t=1

Dt, D1, 0, D2, 0, . . . , DT , 0)

be a random vector consisting of the random variables D1, . . . , DT . The minimum stochastic cost flow
problem is the optimization model formulated as follows:
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Minimize ED,P
∑

(i,j)∈A

ci,j(xi,j) (17)

subject to ∑
{j:(j,i)∈E}

xj,i −
∑

{j:(i,j)∈E}

xi,j = Ai − Iδi=1, i = 0, 1, . . . , 2T,

where the expectation is taken over the joint distribution of D1, . . . , DT and a dynamic flow policy P . A
dynamic flow policy is a decision rule for assigning nonnegative values for the variables xi,j , that is determined
with the gradual realization of the the random variables D1, . . . , DT . A policy P first determines the value
of x0,1 (which is the number of units to produce in time period 1). Then the value of D1 is revealed, and
based upon this information, the policy determines the values of x1,2, x2,1, x2,0, x2,3, x3,2 and x0,3 (which
determine the disposal amount in period 1 and the production amount in period 2). In general, just after
the value of Dt is revealed, the policy determines the values of x2t−1,2t, x2t,2t−1, x2t,0, x2t,2t+1, x2t+1,2t and
x0,2t+1. It is easy to see that each feasible solution for SLS with cost C is transferred to a feasible solution
for the corresponding SNF with the same cost and vice versa.

In order to formulate the SLS (2) as a monotone DP (16) we set the time horizon of the transformed
problem to consist of 2T time periods and define the cost functions gt(·) as follows (recall that if y < 0 then
ht(y) = bt(−y)):

g2t−1(I, x,D) = ct(x), g2t(I, x,D) = dt(−x) + ht(I + x), t = 1, . . . , T, g2T+1(I) = 0.

We define the transition functions ft(·) and the random variables D′
1, . . . , D

′
2T as follows:

f2t−1(I, x,D) = f2t(I, x,D) = I + x−D, D′
2t−1 = Dt, D′

2t = 0, t = 1, . . . , T.

Let D∗ be an upper bound (polynomially bounded by the input size) on the maximum possible aggregated
demand over the entire time horizon. We define the state space and action space as:

S2t−1 = S2t = [−D∗, . . . , D∗], A2t−1(I) = [0, . . . , D∗], A2t(I) =
{

[−I, . . . , 0] for I > 0;
{0} otherwise.

Note that the transformed problem satisfies Conditions 1-2. Indeed, Condition 1 is satisfied since both the
state space and the action space are intervals of length at most 2D∗, for every time period. Condition 2 is
satisfied by the assumptions in the problem description.

As for Condition 3, we note that indeed f2t−1(·, ·, D), f2t(·, ·, D) are nondecreasing in their first variable
and monotone in their second variable as needed. Moreover, g2t−1(·, ·, D) are nonnegative functions nonin-
creasing in their first variable and nondecreasing in their second variable. Furthermore, A2t−1(I) = A2t−1(I ′)
for all I ′, I ∈ S2t−1 with I ′ < I. However, g2t(I, x,D) are not necessarily monotone in their second variable
and zt is not necessarily nonincreasing. In order to satisfy Condition 3 we make additional assumptions as
stated in the next subsections.

6.1 Disposal at no cost

In this section we deal with the case where disposal of inventory is free of charge.

Assumption 1 (Free disposal). Inventory can be disposed at no cost at any time period.

Theorem 6.1. The single-item stochastic lot-sizing problem under the free disposal assumption (Assump-
tion 1) admits an FPTAS.

Proof. Due to Theorem 5.1 and the discussion in the end of the section above, it suffices to prove that
g2t(I, ·, D) are monotone and that the cost functions zt(·) are nonincreasing. We note that by the free
disposal assumption dt(·) ≡ 0. We also note that ht(I + x) is nondecreasing in x ∈ A2t(I) for every fixed I.
Therefore, g2t(I, ·, D) are nondecreasing.
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We last prove by backward induction that zt(·) are nonincreasing. The base case of z2T+1(I) = g2T+1(I) =
0 is trivial. The induction hypothesis is that z2t+1(·) is nonincreasing. We distinguish between 3 cases:
I < 0, I > 0 and I = 0. If I < 0 we have A2t = {0} so:

z2t(I) = bt(−I) + z2t+1(I) ≥ bt(−I − 1) + z2t+1(I + 1) = z2t(I + 1),

where the inequality is due to the monotonicity of the backlogging cost function and the induction hypothesis.
If, on the other hand, I > 0 then:

z2t(I) = min{ht(I) + z2t+1(I), · · · , ht(0) + z2t+1(0)}
≥ min{ht(I + 1) + z2t+1(I + 1), ht(I) + z2t+1(I), · · · , ht(0) + z2t+1(0)} = z2t(I + 1).

Last, if I = 0 then
z2t(0) = z2t+1(0) ≥ min{ht(1) + z2t+1(1), z2t+1(0)} = z2t(1).

Hence z2t(·) is nonincreasing. It remains to show that z2t−1(·) is nonincreasing as well:

z2t−1(I) = min{z2t(I −Dt), ct(1) + z2t(I + 1−Dt), · · · , ct(D∗) + z2t(I +D∗ −Dt)}
≥ min{z2t(I + 1−Dt), ct(1) + z2t(I + 2−Dt), · · · , ct(D∗) + z2t(I + 1 +D∗ −Dt)} = z2t−1(I + 1).

The inequality is due to the monotonicity of z2t.

6.2 Disposal at a cost

When disposal of inventory incurs a cost, we will make the following three assumptions:

Assumption 2 (Bounded disposal cost). There exists a positive constant κ such that for every t = 1, . . . , T ,
and for every random vector Dt = (Dt, . . . , DT ) and I ∈ Z, and for every feasible solution for the lot-
sizing problem from time-period t onwards, starting with initial inventory I, the expected cost of that solution
is at least κ times the total cost of disposing E(Dt) − I, E(Dt+1), . . . , E(DT ) units of inventory in time
periods t, t + 1, . . . , T , respectively (either directly, or indirectly by holding it a few more time periods and
then disposing it, i.e., the cost of disposing x units in time period t is min{dt(x), ht(x) + dt+1(x), ht(x) +
ht+1(x) + dt+2(x), . . . ,

∑T−1
i=t hi(x) + dT (x)}).

Assumption 3 (Linear holding and disposal costs). For every time period, each of the holding, backlogging
and disposal costs is linear.

For each time period t = 1, . . . , T , we denote the per-unit disposal cost by dt, the per-unit holding cost by
ht, and the per-unit backlogging cost by bt.
Note that this assumption allows the procurement cost functions to be nonlinear.

Assumption 4 (No backward disposal). For every time period t = 2, . . . , T , it is not beneficial to dispose of
inventory in the previous time period, i.e., bt−1+dt−1 > min{dt, ht+dt+1, ht+ht+1+dt+2, . . . ,

∑T−1
i=t hi+dT }.

An easy special case where this assumption holds is when the per-unit disposal costs are nonincreasing with
time (or even stationary).

We are now ready to give an FPTAS for SLS with disposal costs. The idea is to first transform the
stochastic network flow minimization problem corresponding to the lot-sizing problem to be monotone by
adding a constant C to any feasible solution. In this way the resulted transformed problem is a monotone DP,
and therefore by the framework of [HKL+08] admits an FPTAS. We retrieve the value of the approximated
original problem by subtracting C from the value of the transformed problem. By appropriate choices of C
and K, and by using subtraction of approximation this value is at most 1 + ε times the optimal value.

Theorem 6.2. The single-item stochastic lot-sizing problem with bounded disposal cost, linear holding and
disposal costs, and without backward disposal (Assumptions 2-4) admits an FPTAS.
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Proof. We first note that due to Assumption 3, g2t(I, x, d) are linear in x ∈ A2t(I), for every fixed I and
d, and therefore are monotone.

We next transform (17), the stochastic network flow minimization problem corresponding to the lot-sizing
problem, in the following way. We assign to each vertex t = 1, . . . , 2T, a nonnegative number πt that we
call a potential. The assignment of potentials goes in backward as follows. We first set π2T = π2T−1 = dT .
Assuming π2t+1 is determined, we set π2t = π2t−1 = min{ht+π2t+1, dt}. We continue iterating until setting
all potentials π2T , . . . , π1. (Note that all potentials assigned in this way are indeed nonnegative.) By its
construction, the potential πt is the minimal total cost of disposing a unit of inventory from vertex t via
some vertex j ≥ t in the network, i.e.,

π2t = π2t−1 = min
{
dt, ht + dt+1, ht + ht+1 + dt+2, . . . ,

T−1∑
i=t

hi + dT

}
. (18)

We set π0 = 0 and Π = (π0, . . . , π2T ).
We next change the cost functions as follows. We change the cost of flow in each edge ei,i+1 to be

c′i,i+1(x) ← ci,i+1(x) + (πi+1 − πi)x. We change the cost of flow in each edge ei+1,i to be c′i+1,i(x) ←
ci+1,i(x) − (πi+1 − πi)x. We increase the cost of flow in edge e0,2t−1 to c′0,2t−1(x) ← c0,2t−1(x) + π2t−1x.
Last, we decrease the cost of flow in each edge e2t,0 to c′2t,0(x) ← c2t,0(x)− π2tx. In this way the marginal
cost of net inflow to vertex t is increased by πt, while the marginal cost of net outflow from vertex t is
decreased by πt.

We now show that the DP formulation corresponding to the transformed stochastic network flow mini-
mization problem is a nonincreasing DP. Since the state and access spaces remain the same as in the original
SLS problem, Condition 1 is satisfied. As for Condition 2, the values of the transformed functions differ
from the original ones by combinations of πs, so by (18) they remain polynomially bounded by the input
size. It remains to show that the single-period cost functions, which are sums of costs of flows over edges are
nonnegative. It is easy to verify that the cost of flow from vertex 2t− 1 to vertex 2t and vice versa is zero.
The cost of flow of x units from vertex 0 (which has potential 0) to vertex 2t − 1 is ct(x) + π2t−1x. This
cost is indeed nonnegative because ct(·) is a nondecreasing nonnegative function and π2t−1 is a nonnegative
number. The per-unit cost of flow from vertex 2t to vertex 2t + 1 is ht + π2t+1 − π2t, so by the recursive
definition of the potentials it is nonnegative. The per-unit cost of flow from vertex 2t to vertex 0 is dt− π2t,
which by the definition of the potentials is a nonnegative number. Lastly, the per-unit cost of flow from
vertex 2t + 1 to vertex 2t is bt + (π2t − π2t+1). If π2t = ht + π2t+1 then this last term is nonnegative as
well. Else π2t = dt, and by the no backward disposal assumption (Assumption 4) and (18) this term is again
nonnegative.

It remains to show that Condition 3 is satisfied as well. Since the transition functions in the transformed
problem are the same as in the original SLS problem, and since we showed above that the single-period
cost functions are nonnegative nondecreasing functions in the amount of flow, it suffices to prove that the
transformed problem is nonincreasing in the amount of inventory. It suffices to show that the choice of the
potentials implies that for every vertex i, the cost of flow to either vertex 0 (if edge ei,0 exists) or vertex
i + 1 is zero. This implies that the transformed problem is nonincreasing - the more inventory we have on
hand - the less expenses we have to satisfy the demand. (A formal proof for this is via backward induction,
similarly to the proof of Theorem 6.1.) Suppose first that i = 2t − 1. Then the cost of flow of x units on
edge e2t−1,2t is c′2t−1,2t(x) = 0 + (π2t − π2t−1)x = 0. If on the other hand i = 2t, then edge e2t,0 exists
and with cost c′2t,0(x) = dtx − π2tx per x units. If this cost is not zero, i.e., if π2t 6= dt, then we must
have π2t = ht + π2t+1, i.e., π2t+1 − π2t = −ht. But then the cost of flow of x units on edge e2t,2t+1 is
c′2t,2t+1 = htx + (π2t+1 − π2t)x = 0. To summarize, the transformed problem satisfies Conditions 1-3, and
therefore is a nonincreasing DP. Due to Theorem 5.2, it admits an FPTAS.

Note that by the above transformation, for every random vector D, initial inventory level I and policy
P , we get that

z′∗(I) = ED,P
∑

(i,j)∈E c
′
i,j(xi,j) =

∑
ω∈Ω Prob(ω)

∑
(i,j)∈E c

′
i,j(xi,j)

=
∑
ω∈Ω Prob(ω)[

∑
(i,j)∈E ci,j(xi,j |ω) + (A(I)ΠT |ω)]

= ED,P
∑

(i,j)∈E ci,j(xi,j) + EDA(I)ΠT = z∗(I) + EDA(I)ΠT ,
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where the second equality is from Property 2.4 on page 43 of [AMO93]. This means that the difference
between z′∗(I)–i.e., the value of an optimal solution to the transformed problem–and z∗(I)–i.e., the value
of an optimal solution of the original problem–is fixed to be ΠEDAT (I). So if we can find the optimal
value of the transformed problem, then by subtracting from it EDA(I)ΠT we get the optimal value of
the original problem. If we cannot efficiently compute the exact value z′∗(I) of the transformed prob-
lem, by the discussion above we can design for it an FPTAS and K1-approximate it for every K1 > 1.
By the bounded disposal cost assumption (Assumption 2), we get that z∗(I) ≥ κEDA(I)ΠT , so z′∗(I) =
z∗(I) + EDA(I)ΠT ≥ (1 + κ)EDA(I)ΠT . By subtraction of approximation from above (Proposition 3.10
applied with c = 1/(1 + κ), ϕ1 = z′∗, ϕ2 = EDA(I)Πt and K1 = 1 + κε

1+κ ) we get a (1 + ε)-approximation for
ϕ1 − ϕ2 = z∗.

7 Extensions

7.1 Implicitly-described random variables

In this section we show how to deal with a more general setting of nonincreasing stochastic dynamic pro-
gramming where the random variables are given implicitly by oracles to their CDFs. In this way we can
handle distributions with support of exponential size (in the binary input size), such as truncated Poisson
with given rate λ and upper bound M , or truncated discrete normal with parameters µ, σ and lower and
upper bounds m,M .

Considering SLS with implicitly-described random variables D1, . . . , DT , the DP recursion (16) special-
ized for this problem reads

z2t−1(I) = min
x≥0
{ct(x) + EDtz2t(I + x−Dt)}, (19)

and
z2t(I) = min

x≤0
{dt(−x) + ht(I + x) + z2t+1(I + x)}. (20)

While (20) is a deterministic recursion which can be approximated directly via Theorem 3.3, (19) is a
stochastic one. Since we assume the random variable is given implicitly by its CDF, the way the stochastic
DP model studied in [HKL+08] calculates expectations does not apply. But we can bypass this difficulty by
applying Corollary 3.6 in order to compute ξ̃2t that approximates EDt

z2t(I + x−Dt). (Note that since we
are given the CDF as an oracle function, we apply this proposition with K2 = 1.) We then approximate (19)
via Theorem 3.3 by setting ϕ̃2 = ξ̃2t, and iterate the recursion similarly to the way it is done in [HKL+08].
This gives us an FPTAS for SLS with implicitly-described random variables.

7.2 Positive lead times

Under general lead times, the value function of SLS (with explicitly-described random variables) is mul-
tivariate. It is well known that this dynamic program can be transformed into a single-variable dynamic
program [Zip00] (the state corresponds to inventory position, which is defined as the inventory on-hand and
all outstanding inventory). It is easy to show that this transformation preserves the approximation ratio
and as a result it suffices to find an FPTAS for this single variate dynamic program. If L > 0 is an arbitrary
lead time, then the underlying demand distribution of the transformed problem is D̄t =

∑t+L−1
t̂=t

Dt̂. The
FPTAS in [HKM+09] requires that we know Prob[D̄t = d̄t,i], which is a convolution of L distributions. As a
result, computing these probabilities takes (n∗)L time, where n∗ is the maximal cardinality of the supports
of the various Di’s. If L is 2 or 3 (or any other constant value), then the term (n∗)L is polynomial, and
the algorithm is an FPTAS. If L is not constrained to be small (e.g., L = T/4), then the running time is
exponentially large. In the latter case, the algorithm in [HKM+09] is not an FPTAS. An open question was
raised in [HKM+09] whether one can modify the approach and create an FPTAS for the problem in which
the lead times are permitted to be a fraction of T .

We give a positive answer to this question and design an FPTAS in the following way. For 0 ≤ j ≤ L and
1 ≤ i ≤ T −j, let F ji be the CDF of the convolution of Di, . . . , Di+j , i.e., F ji (x) = Prob(Di+ · · ·+Di+j ≤ x).
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We compute F ji exactly for j = 0, 1 and 1 ≤ i ≤ T − j. For 2 ≤ j ≤ L and 1 ≤ i ≤ T − j we build a
Kj−1-approximation function F̃ ji for F ji via K-approximation sets (see Lemma 3.2 and Definition 3.4) in a
recursive way by using the calculus of approximation and the equality

F ji (x) = P (Di + · · ·+Di+j ≤ x) =
∑

y≤x and y is in the support of Di

Prob(Di = y)F j−1
i+1 (x− y).

(Since CDF is a monotone function, a K-approximation set for it is well defined.) We then proceed as
described in Section 7.1 with the only difference that instead of having oracles that compute the CDFs
exactly, we use approximations, i.e., we apply Corollary 3.6 with K2 = KL−1).

7.3 Non-exact evaluation of CDF and cost functions

In the problem formulation we require that there exist oracles that compute the CDF and cost functions
exactly. We can weaken this requirement as follows.

Assumption 5. For every ε ≥ 0, there exist cost functions f̃ ε and CDF functions F̃ ε such that

|f̃ ε(x)− f(x)|
f(x)

≤ ε, |F̃ ε(x)− F (x)|
F (x)

≤ ε,

for every x, and these functions can be evaluated in polynomial time in the input size and 1/ε.

This assumption is equivalent to the statement that the cost functions and the CDF have an FPTAS. This
assumption is useful when the population is divided into n subpopulations, each of which is provided with
its CDF. This is true since the sum of n discrete distributions can be computed approximately. Also, any
cost function that requires simulation can be computed approximately with high probability when the lowest
and greatest non-zero probability is bounded away from 0 and 1. It can be shown that by performing minor
modifications all the results presented in this paper hold under this assumption as well.

8 Conclusion and future research

In this paper we show that NNV requires exponential number of queries to solve and provide an FPTAS in
the case that the profit-to-cost ratio is bounded away from 0. We can design FPTASs for variants of NNV
in a similar way. For instance, when there is a penalty p(·) for lost sales, we will add p((D− (x+ y))) to the
right hand side of equation (1). When there is a possibility for expedited ordering and shipping at cost p(·),
we will add p((D− (x+ y))) to the right hand side of equation (1), and replace r(min(D,x+ y)) with r(D).

Previous researchers also designed worst-case approximation algorithms for certain families of instances
of otherwise inapproximable optimization problems (see, e.g., [AKK99, KPR04, FIMN09]). Kleinberg et
al. [KPR04] study a novel genre of optimization problems that they call segmentation problems. They
analyze a greedy algorithm for the variable catalogue segmentation problem when the number of catalogues
is not set in advance, and show lower and upper bounds on the approximation ratio of the algorithm, which
depends on the profit-to-cost ratio of the minimal-cost optimal solution of the specific instance. They also
present a general greedy scheme, which can be specialized to approximate any segmentation problem. Feige
et al. [FIMN09] introduce a framework for designing and analyzing algorithms. They design guarantees for
classes of instances, parameterized according to properties of the optimal solution (which they call signature
of the solution). They consider greedy algorithms as well as LP-based algorithms to derive approximation
algorithms, some of which strictly improve over the previous results of Kleinberg et al. concerning the
approximation ratio of the greedy algorithm.

Kleinberg et al. and Feige et al. deal with a constant-factor approximation without any guarantee on
the profit-to-cost ratio of the approximated solution. Moreover, it can be shown that the greedy algorithms
stated in their works may have an arbitrary-low profit-to-cost ratio. Similarly to Kleinberg et al. and Feige
et al. we use the profit-to-cost ratio as a parameter in the analysis of the approximation ratio. But we deal
with an arbitrarily-good approximation (FPTAS) that has an arbitrarily-good guarantee on the profit-to-cost
ratio of the approximated solution. It may be of interest, in the context of the works of [KPR04, FIMN09],
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to develop 2-parameter (K, δ) algorithms that provide solutions that approximate the values of the optimal
solutions of the problems they consider within a factor of K, and have profit-to-cost ratios of at least 1− δ
times the profit-to-cost ratio of the minimal-cost optimal solutions.

In this paper we also extend previous results of Halman et al. [HKL+08, HKM+09, HLS09] in various
ways. One of the assumptions they make in the analysis of their FPTASs is that the probability distribution
function of each random variable D is given explicitly as a set of ordered pairs (d,Prob(D = d)). In this
paper we show a way of using cumulative distribution functions (CDFs) instead of discrete distributions in
the analysis, hence enabling us to handle random variables with support of size exponential in the (binary)
size of their description. This also extends the framework of [HKL+08] to models where the random variables
are given implicitly (e.g., truncated Poisson with rate λ and upper bound M). We also relax the convexity
assumption made by [HKM+09]. This enables us to give FPTASs for SLS with a positive lead-time.

All the problems dealt by [HKM+09, HKL+08, HLS09] are either for minimizing costs, or maximizing
revenues. All these works used some set of general computational rules of K-approximation functions, which
[HKL+08] called the calculus of K-approximation functions. If the objective is to maximize profit, i.e.,
the difference between revenues and costs, having a rule in the calculus of approximation that deals with
subtraction is desirable. In this paper we extend the calculus of approximation to deal with subtraction of
functions and use it to develop an FPTAS for NNV and SLS.

A natural extension of our models and the approach introduced in this paper is in the context of revenue
management, where profit maximization is typically the objective. For example, in the stochastic inventory-
pricing model (see Chapter 9 in [SCB05]), the objective is to coordinate inventory replenishment and pricing
decisions so as to maximize expected profit. This extension is presented in a follow up work [HOS11].
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