39 research outputs found

    Speciation Along Environmental Gradients

    Get PDF
    Traditional discussions of speciation are based on geographical patterns of species ranges. In allopatric speciation, long-term geographical isolation generates reproductively isolated and spatially segregated descendant species. In the absence of geographical barriers, diversification is hindered by gene flow. Yet a growing body of phylogenetic and experimental data suggests that closely related species often occur in sympatry or have adjacent ranges in regions over which environmental changes are gradual and do not prevent gene flow. Theory has identified a variety of evolutionary processes that can result in speciation under sympatric conditions, with some recent advances concentrating on the phenomenon of evolutionary branching. Here we establish a link between geographical patterns and ecological processes of speciation by studying evolutionary branching in spatially structured populations. We show that along an environmental gradient, evolutionary branching can occur much more easily than in non-spatial models. This facilitation is most pronounced for gradients of intermediate slope. Moreover, spatial evolutionary branching readily generates patterns of spatial segregation and abutment between the emerging species. Our results highlight the importance of local processes of adaptive divergence for geographical patterns of speciation, and caution against pitfalls of inferring past speciation processes from present biogeographical patterns

    Where Two Are Fighting, the Third Wins: Stronger Selection Facilitates Greater Polymorphism in Traits Conferring Competition-Dispersal Tradeoffs

    Get PDF
    A major conundrum in evolution is that, despite natural selection, polymorphism is still omnipresent in nature: Numerous species exhibit multiple morphs, namely several abundant values of an important trait. Polymorphism is particularly prevalent in asymmetric traits, which are beneficial to their carrier in disruptive competitive interference but at the same time bear disadvantages in other aspects, such as greater mortality or lower fecundity. Here we focus on asymmetric traits in which a better competitor disperses fewer offspring in the absence of competition. We report a general pattern in which polymorphic populations emerge when disruptive selection increases: The stronger the selection, the greater the number of morphs that evolve. This pattern is general and is insensitive to the form of the fitness function. The pattern is somewhat counterintuitive since directional selection is excepted to sharpen the trait distribution and thereby reduce its diversity (but note that similar patterns were suggested in studies that demonstrated increased biodiversity as local selection increases in ecological communities). We explain the underlying mechanism in which stronger selection drives the population towards more competitive values of the trait, which in turn reduces the population density, thereby enabling lesser competitors to stably persist with reduced need to directly compete. Thus, we believe that the pattern is more general and may apply to asymmetric traits more broadly. This robust pattern suggests a comparative, unified explanation to a variety of polymorphic traits in nature.ope

    Out of the Pacific and Back Again: Insights into the Matrilineal History of Pacific Killer Whale Ecotypes

    Get PDF
    Killer whales (Orcinus orca) are the most widely distributed marine mammals and have radiated to occupy a range of ecological niches. Disparate sympatric types are found in the North Atlantic, Antarctic and North Pacific oceans, however, little is known about the underlying mechanisms driving divergence. Previous phylogeographic analysis using complete mitogenomes yielded a bifurcating tree of clades corresponding to described ecotypes. However, there was low support at two nodes at which two Pacific and two Atlantic clades diverged. Here we apply further phylogenetic and coalescent analyses to partitioned mitochondrial genome sequences to better resolve the pattern of past radiations in this species. Our phylogenetic reconstructions indicate that in the North Pacific, sympatry between the maternal lineages that make up each ecotype arises from secondary contact. Both the phylogenetic reconstructions and a clinal decrease in diversity suggest a North Pacific to North Atlantic founding event, and the later return of killer whales to the North Pacific. Therefore, ecological divergence could have occurred during the allopatric phase through drift or selection and/or may have either commenced or have been consolidated upon secondary contact due to resource competition. The estimated timing of bidirectional migration between the North Pacific and North Atlantic coincided with the previous inter-glacial when the leakage of fauna from the Indo-Pacific into the Atlantic via the Agulhas current was particularly vigorous

    Frequency-dependent selection predicts patterns of radiations and biodiversity

    Get PDF
    Most empirical studies support a decline in speciation rates through time, although evidence for constant speciation rates also exists. Declining rates have been explained by invoking niche-filling processes, whereas constant rates have been attributed to non-adaptive processes such as sexual selection, mutation, and dispersal. Trends in speciation rate and the processes underlying it remain unclear, representing a critical information gap in understanding patterns of global diversity. Here we show that the speciation rate is driven by frequency dependent selection. We used a frequency-dependent and DNA sequence-based model of populations and genetic-distance-based speciation, in the absence of adaptation to ecological niches. We tested the frequency-dependent selection mechanism using cichlid fish and Darwin's finches, two classic model systems for which speciation rates and richness data exist. Using negative frequency dependent selection, our model both predicts the declining speciation rate found in cichlid fish and explains their species richness. For groups like the Darwin's finches, in which speciation rates are constant and diversity is lower, the speciation rate is better explained by a model without frequency-dependent selection. Our analysis shows that differences in diversity are driven by larger incipient species abundance (and consequent lower extinction rates) with frequency-dependent selection. These results demonstrate that mutations, genetic-distance-based speciation, sexual and frequency-dependent selection are sufficient not only for promoting rapid proliferation of new species, but also for maintaining the high diversity observed in natural systems

    Sympatric speciation suggested by monophyly of crater lake cichlids

    No full text
    THE existence of sympatric speciation-that populations diverge into species in the absence of physical or ecological barriers-is controversial1-6. The East African Great Lakes harbour hundreds of cichlid species representing only a few monophyletic lineages7,8, although palaeolimnological evidence9-11 and local restrictions on species distribution12 suggest that speciation in these lakes could have been allopatric13,14. The case for sympatry in restricted areas of Lakes Malawi and Tanganyika is stronger15-17 but not unassailable. A better case might be made for cichlid species flocks in small, ecologically monotonous crater lakes. Here we present a mitochondrial DNA analysis of cichlid species flocks endemic to two such lakes in Cameroon. The results suggest that the flocks in each lake are monophyletic: the implication being that each lake was colonized once only, the size and shape of each lake being such that subsequent diversification would have been sympatric

    The impact of stocking on the genetic integrity of Arctic charr (Salvelinus) populations from the Alpine region

    No full text
    There is a long tradition of artificially stocking lakes and rivers with fish in the hope to increase the quality and amount of fish that can be harvested. The animals used for stocking often originate in distant hatcheries or hatcheries that breed fish from remote regions. This stocking practice could have effects on the genetic integrity of resident populations. We have analysed here a case of the influence of stocking on Alpine populations of the Arctic charr (usually included into Salvelinus alpinus, but revised to Salvelinus umbla Kottelat 1997) within a unique geographical and historical setting. The Konigssee in the Bavarian Alps (Berchtesgaden) was heavily stocked several times during the last century. However, a sample of the ancestral Konigssee population still exists in the Grunsee, which lies close to Konigssee, but 1000 m higher. To trace the influence of stocking in Konigssee we have analysed more than 300 individuals from 10 lake populations, including the source populations of the fish used for stocking. From these we have sequenced a part of the mitochodrial control region and have typed them at six microsatellite loci. The differential distribution of haplotypes, as well as assignment tests, show that the influence of stocking on the genetic integrity of the Konigssee population has been negligible. However, our data reveal that in another lake included in our study (Starnberger See), the ancestral population was apparently replaced completely by the populations used for stocking. The major difference between the lakes is the relative preservation of ecological integrity. Konigssee was ecologically stable in the past, whereas Starnberger See was heavily polluted at one point, with charr approaching extinction. Interestingly, in a lake neighbouring Starnberger See, the Ammersee, which was also subject to strong pollution but not stocked, the ancestral population has recovered. Our data suggest that the practice of artificial stocking should be reconsidered, or at least monitored for effectiveness

    Phylogeography of the bullhead Cottus gobio (Pisces : Teleostei : Cottidae) suggests a pre-Pleistocene origin of the major central European populations

    No full text
    The bullhead Cottus gobio is a small, bottom-dwelling fish consisting of populations that have not been subject to transplantations or artificial stocking. It is therefore an ideal model species for studying the colonization history of central European freshwater systems, in particular with respect to the possible influences of the Pleistocene glaciation cycles. We sampled Cottus populations across most of its distribution range, with a special emphasis on southern Germany where the major European drainage systems are in closest contact. Mitochondrial d-loop sequencing of more than 400 specimens and phylogenetic network analysis allowed us to draw a detailed picture of the colonization of Europe by C. gobio. Moreover, the molecular distances between the haplotypes enabled us to infer an approximate time frame for the origin of the various populations. The founder population of C. gobio stems apparently from the Paratethys and invaded Europe in the Pliocene. From there, the first colonization into central Europe occurred via the ancient lower Danube, with a separate colonization of the eastern European territories. During the late Pliocene, one of the central European populations must have reached the North Sea in a second step after which it then started to colonize the Atlantic drainages via coastal lines. Accordingly, we found very distinct populations in the upper and lower Rhine, which can be explained by the fact that the lower Rhine was disconnected from the upper Rhine until approximate to 1 million years ago (Ma). More closely related, but still distinct, populations were found in the Elbe, the Main and the upper Danube, all presumably of Pleistocene origin. Intriguingly, they have largely maintained their population identity, despite the strong disturbance caused by the glaciation cycles in these areas. On the other hand, a mixing of populations during postglacial recolonization could be detected in the lower Rhine and its tributaries. However, the general pattern that emerges from our analysis suggests that the glaciation cycles did not have a major impact on the general population structure of C. gobio in central Europe
    corecore