331 research outputs found

    Clinical management and microscopic characterisation of fatique-induced failure of a dental implant. Case report

    Get PDF
    BACKGROUND: Osseointegrated endosseous implants are widely used for the rehabilitation of completely and partially edentulous patients, being the final prosthodontic treatment more predictable and the failures extremely infrequent. A case of fracture of an endosseous dental implant, replacing the maxillary first molar, occurring in a middle-age woman, 5 years after placement is reported. MATERIALS AND METHODS: The difficult management of this rare complication of implant dentistry together with the following rehabilitation is described. Additionally, the authors performed an accurate analysis of the removed fractured implant both by the stereomicroscope and by the confocal laser scanning microscope. RESULTS AND DISCUSSION: The fractured impant showed the typical signs of a fatigue-induced fracture in the coronal portion of the implant together with numerous micro-fractures in the apical one. Three dimensional imaging performed by confocal laser scanning microscope led easily to a diagnosis of "fatigue fracture" of the implant. The biomechanical mechanism of implant fractures when overstress of the implant components due to bending overload is discussed. CONCLUSION: When a fatigue-induced fracture of an dental implant occurs in presence of bending overload, the whole implant suffers a deformation that is confirmed by the alterations (micro-fractures) of the implant observable also in the osseointegrated portion that is easily appraisable by the use of stereomicroscope and confocal laser scanning microscope without preparation of the sample

    Fatigue and microgap behaviour of a three-unit implant-fixed dental prosthesis combining conventional and dynamic abutments

    Get PDF
    This is an in vitro study composed by a fatigue test followed by an optical microscopy analysis. Dynamic abutments concept, recently introduced on screw-retained implant dental prosthesis, consists on the screw channel customisation according to the individual needs of each rehabilitation. Geometry and tightening torque differences advise the assessment of their mechanical performance. Clarify whether the combination of dynamic and conventional abutments in a three-unit implant-fixed prosthesis has detrimental effects either on the mechanical performance under cyclic loading or on the implant-abutment microgap dimensions. The fatigue test was performed in agreement with the ISO standard 14801. Then on the samples that resisted 5 million cycles, the implant-abutment microgap was measured on dynamic and conventional abutments using optical microscopy. Two unloaded samples were used as control group. The samples supported a load of 1050 N. The implant-abutment microgap measurement did not show statistically significant differences (p=.086) between loaded and unloaded groups, but the loaded conventional abutments showed a significant lower implant-abutment microgap (p=.05) than the loaded dynamic abutments. The combination of conventional and dynamic abutments do not seem to produce a decrease in fatigue resistance to a level below the mastication forces or an increase in the joint dimensions.The study was supported in part by SciTech - Science and Technology for Competitive and Sustainable Industries, and the R&D project was cofinanced by the North Portugal Regional Operational Program ("NORTE2020") and the European Regional Development Fund (FEDER)

    Influence of bone density on implant stability parameters and implant success: a retrospective clinical study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The aim of the present clinical study was to determine the local bone density in dental implant recipient sites using computerized tomography (CT) and to investigate the influence of local bone density on implant stability parameters and implant success.</p> <p>Methods</p> <p>A total of 300 implants were placed in 111 patients between 2003 and 2005. The bone density in each implant recipient site was determined using CT. Insertion torque and resonance frequency analysis were used as implant stability parameters. The peak insertion torque values were recorded with OsseoCare machine. The resonance frequency analysis measurements were performed with Osstell instrument immediately after implant placement, 6, and 12 months later.</p> <p>Results</p> <p>Of 300 implants placed, 20 were lost, meaning a survival rate of %. 93.3 after three years (average 3.7 ± 0.7 years). The mean bone density, insertion torque and RFA recordings of all 300 implants were 620 ± 251 HU, 36.1 ± 8 Ncm, and 65.7 ± 9 ISQ at implant placement respectively; which indicated statistically significant correlations between bone density and insertion torque values (p < 0.001), bone density and ISQ values (p < 0.001), and insertion torque and ISQ values (p < 0.001). The mean bone density, insertion torque and RFA values were 645 ± 240 HU, 37.2 ± 7 Ncm, and 67.1 ± 7 ISQ for 280 successful implants at implant placement, while corresponding values were 267 ± 47 HU, 21.8 ± 4 Ncm, and 46.5 ± 4 ISQ for 20 failed implants; which indicated statistically significant differences for each parameter (p < 0.001).</p> <p>Conclusion</p> <p>CT is a useful tool to determine the bone density in the implant recipient sites, and the local bone density has a prevailing influence on primary implant stability, which is an important determinant for implant success.</p

    Circadian Rhythm and Cartilage Extracellular Matrix Genes in Osseointegration: A Genome-Wide Screening of Implant Failure by Vitamin D Deficiency

    Get PDF
    Successful dental and orthopedic implants require the establishment of an intimate association with bone tissue; however, the mechanistic explanation of how biological systems accomplish osseointegration is still incomplete. We sought to identify critical gene networks involved in osseointegration by exploring the implant failure model under vitamin D deficiency.Adult male Sprague-Dawley rats were exposed to control or vitamin D-deficient diet prior to the osteotomy surgery in the femur bone and the placement of T-shaped Ti4Al6V implant. Two weeks after the osteotomy and implant placement, tissue formed at the osteotomy site or in the hollow chamber of T-shaped implant was harvested and total RNA was evaluated by whole genome microarray analyses.Two-way ANOVA of microarray data identified 103 genes that were significantly (>2 fold) modulated by the implant placement and vitamin D deficiency. Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses assigned the highest z-score to the circadian rhythm pathway including neuronal PAS domain 2 (NPAS2), and period homolog 2 (Per2). NPAS2 and Aryl hydrocarbon receptor nuclear translocator-like (ARNTL/Bmal 1) were upregulated around implant and diminished by vitamin D deficiency, whereas the expression pattern of Per2 was complementary. Hierarchical cluster analysis further revealed that NPAS2 was in a group predominantly composed of cartilage extracellular matrix (ECM) genes. Whereas the expression of bone ECM genes around implant was not significantly affected by vitamin D deficiency, cartilage ECM genes were modulated by the presence of the implant and vitamin D status. In a proof-of-concept in vitro study, the expression of cartilage type II and X collagens was found upregulated when mouse mesenchymal stem cells were cultured on implant disk with 1,25D supplementation.This study suggests that the circadian rhythm system and cartilage extracellular matrix may be involved in the establishment of osseointegration under vitamin D regulation
    • …
    corecore