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ABSTRACT 

Study Design: This is an in vitro study composed by a fatigue test followed by an 

optical microscopy analysis. 

Background: Dynamic abutments concept, recently introduced on screw-retained 

implant dental prosthesis, consists on the screw channel customization according to the 

individual needs of each rehabilitation. Geometry and tightening torque differences 

advise the assessment of their mechanical performance.  

Objectives: Clarify whether the combination of dynamic and conventional abutments in 

a three-unit implant-fixed prosthesis, has detrimental effects either on the mechanical 

performance under cyclic loading or on the implant-abutment microgap dimensions. 

Methods: The fatigue test was performed in agreement with the ISO standard 14801. 

Than on the samples that resisted 5 million cycles, the implant-abutment microgap was 

measured on dynamic and conventional abutments using optical microscopy. Two 

unloaded samples were used as control group. 

 José Rocha Ferreira, Nannan Song, Margarida Machado, Luís Machado, André Correia & Ana Reis 
(2018) Fatigue and microgap behaviour of a three-unit implant-fixed dental prosthesis combining 
conventional and dynamic abutments, Journal of Medical Engineering & Technology, 42:5, 397-405, 
DOI: 10.1080/03091902.2018.1520312 

Fatigue and microgap behaviour of a three-unit implant-fixed dental prosthesis 
combining conventional and dynamic abutments 

José Rocha Ferreira, Nannan Song, Margarida Machado, Luís Machado , André Correia & Ana Reis 
 
 



 

Results: The samples supported a load of 1050N. The implant-abutment microgap 

measurement did not show statistically significant differences (p=0,086) between 

loaded and unloaded groups, but the loaded conventional abutments showed a 

significant lower implant-abutment microgap (p=0,05) than the loaded dynamic 

abutments. 

Conclusions: The combination of conventional and dynamic abutments do not seem to 

produce a decrease in fatigue resistance to a level below the mastication forces or an 

increase in the joint dimensions.  
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MAIN TEXT 

 

1. BACKGROUND  

Even if the long-term success of implant-supported fixed oral rehabilitations 

demands the prevention of any possible biological and mechanical complications (1), the 

biomechanical behavior of dynamic abutments (DA) is scarcely reported in the 

literature (2).  



 

This concept consists of changing the screw channel from a position coincident 

with the implant major axis to an individual orientation (Fig.1). The DA allow a 

customized correction of the screw channel according to each prosthesis’ needs, which 

indicates them for clinical situations where bone remodeling (3) hinders a prosthetically 

driven implant placement (4,5) or when there is a need to mend poor implant positioning. 

Thus, their use may prevent complex surgical interventions (6-11) and represents an 

alternative to cemented prosthesis or angled abutments (12, 13). 

There are two main differences from straight screw channel conventional 

abutments (CA): geometry (angulation of the screw channel and design of the screw 

(Figs. 1, 2, 3 and 4)) and tightening conditions (recommended 20 Ncm). Related to 

geometry and torque differences, there is the risk of screw loosening, which increases 

the microgap and micromovements (14). Furthermore, combined with CA, a screw 

loosening could be clinically unnoticed, due to the presence of conventional screws, 

with a higher tightening torque (35 Ncm). These effects require further attention to 

ensure safe long-term clinical applications. According to the authors’ knowledge, there 

are no published studies accessing the biomechanical performance of DA in 

combination with CA.  

Regardless of its variability (15-19), several authors have reported similar values 

for the highest possible mastication force (841 N (20, 21) and 847 N (22)). The assessment 

of the maximum cyclic load that could be supported by an implant-supported dental 



 

fixed prosthesis combined with a CA and a DA, would clarify the mechanical safety of 

dynamic abutments. The fracture locations, when higher loads are used during the 

experiment, would reveal the weakest points on the implant-prosthesis assembly. 

Manzoor et al (23), studying the likelihood of fracture location on the implant-abutment 

assembly components, found that when specimens with bone loss of 3 mm or more 

were tested, implant body fractures happened. In contrast, those with 1.5 mm of bone 

loss showed abutment and screw fractures.  

The implant-abutment connection is colonized by bacteria (24) and the bacterial 

contamination increases after cyclic loading as a result of a higher misfit (25, 26). This 

biofilm is dependent on the precision of fit between the components and the tightening 

torque used to connect them (14). Nevertheless, Gehrke et al (27) depicted a tendency to a 

decrease of the implant-abutment microgap (IAM) on loaded specimens. Scarano et al 

(28), after analyzing 170 retrieved implants, reported a mean microgap of 61.3 μm. In an 

in vitro study, Dias et al (29), showed a mean IAM inferior to 3 μm. Considering that the 

microbial contamination affects the health of the biologic tissues around the 

osseointegrated implants (24), the IAM analysis, after cyclic loading, might anticipate the 

biological behavior of DA.  

Due to the differences with CA, in order to establish the safety of use of DA in 

combination with CA, the hypothesis under study was whether the inclusion of DA in a 

milled three-unit implant-fixed prosthesis would have detrimental effects either on the 



 

prosthesis mechanical performance under cyclic loading or on the IAM dimensions, 

resulting in an increased biofilm formation. 

 

2. MATERIALS AND METHODS 

The model tested on this experiment was a three-unit implant-supported fixed 

prosthesis composed of a DA, with the maximal angulation possible of the screw 

channel (20°), a pontic, and a CA with a vertical screw channel, obtained from milling 

technology. The prosthesis was screw retained on two Branemark external hexagon 

regular platform implants. The choice of this connection was influenced by the 

suggestion found in the bibliography (30, 31) correlating external connections with weaker 

biomechanical features. All the specimens tested were manufactured by the Avinent® 

Implant Company (Barcelona, Spain). 

 A fatigue test was performed, respecting the International Standard 

Organization (ISO) standard 14801. The fractures were analyzed to reveal patterns. To 

understand whether the cyclic loading had any effect on the microgap dimension, the 

samples that reached five million cycles were submitted to an optical microscope 

analysis to measure the IAM. As the control group, two non-loaded samples were also 

submitted to IAM measurement. The results were statistically analyzed with the 

Wilcoxon rank-sum test with the level of significance of 5% (32, 33). For that propose the 

R Statistical Software (34) was used (Free Software Foundation, Boston, USA). 



 

2.1. Fatigue test  

To comply with ISO standard 14801, some tailor-made solutions were prepared 

(35), to guarantee the correct implant positioning (30° ±1 with the load direction) and the 

distance between the implant platform and the surface of the supporting epoxy resin (3 

mm). This resin constitutes the embedding substrate and should have a 3 GPa Young’s 

modulus. The load was applied to a semi-sphere modeled on the occlusal face of the 

pontic (Figs. 5, 6 and 7). 

A total of thirteen samples were tested. To determine the maximum load that the 

assembly could resist, which corresponds to one cycle on the stress-number of cycles 

curve (S-N curve), three samples were submitted to a static load compressive test using 

a uniaxial universal Instron test machine (Norwood, MA, USA).  

The remaining nine specimens were tested for progressively lower loads as 

depicted on table 1, using an MTS Test machine (Eden Prairie, MN, USA), resulting in 

the failure of the specimens 1 to 6. When the applied load reached 1050 N, the 

specimens remained intact after five million cycles (samples 8, 9 and 10). An 

intermediate load level (1275 N) was tried resulting in sample fracture (sample 7).  

 

2.2. Implant-abutment microgap (IAM) analysis  

The samples were divided into two groups (loaded - L and unloaded - UL), 

composed of two subgroups (conventional and dynamic). 



 

The L group consisted of the three specimens that resisted to compressive 

fatigue (samples 8, 9 and 10). These specimens, now designated as L-8, L-9, and L-10) 

were embedded in epoxy resin and vertically cut, parallel to the major axis of the 

implants to separate the CA from the DA. This process was performed by the use of the 

metallographic cutting machine Exotom 150 (Struers, Rotheram; UK), resulting in the 

loaded conventional subgroup (n=3) and the loaded dynamic subgroup (n=3). These six 

new specimens (3 loaded dynamic and 3 loaded conventional) were polished to reach 

the center of the implant-abutment complex by the use of the semi-automatic 

metallographic polisher Pedemax-2 (Struers, Rotheram; UK) (fig.8). 

The same procedure was performed to prepare two UL assemblies, the control 

group (UL-A, UL-B), resulting in the unloaded conventional subgroup (n=2) and the 

unloaded dynamic subgroup (n=3). 

The specimens were analyzed with an optical emission microscope (PMG3 

Olympus, Tokyo, Japan) with 1,000x magnification. Measurements were performed by 

using the digital system Olympus DP-soft and photos were taken with the digital 

photographic machine Olympus DP-12. Each IAM was visualized in six microscopic 

fields and at least four measurements were carried out for each.  

In this experiment, since small sized groups or subgroups were under study, it 

was not possible to ascertain the normality assumption. In these cases, a nonparametric 

test is the recommended approach. Due to this fact, to access the statistical significance 



 

of the obtained measurements, the Wilcoxon rank-sum test was used. This is a very 

robust test only requiring the continuous or at least ordinal data and the independence of 

both groups.  

 

3. RESULTS 

3.1. Fatigue test  

Regarding the static load compressive test (n=3), a maximum force of 3005 N 

was reported until failure.  

The progressive reduction of the applied load to 2400 N, 1950 N and 1500 N, 

under fatigue tests, resulted in specimens’ failure (samples 1, 2, 3, 4, 5, and 6). When 

the applied load was equal to 1050 N, the three specimens tested (samples 8, 9 and 10) 

remained intact after five million cycles. An intermediate load level (1275 N) was tried 

resulting in sample fracture (sample 7). 

These results demonstrate that the specimens could support a load in the interval 

between 1050 N and 1275 N along 5 million cycles (Table1 and Fig 9).  

It is important to mention that all fractures were reported on the implants, at the 

supporting epoxy resin level (Fig 10), excepting one situation where the fracture 

occurred on the screw.  

 

 



 

3.2. Implant-abutment microgap analysis 

The IAM was measured with a magnification of 1,000x. By analyzing the 

measurements, it was possible to observe a small microgap value for all the specimens. 

Regarding the control group, the highest values were found on the same sample (UL-B), 

either on the conventional subgroup (12.8 μm) or on the dynamic subgroup (7.10 μm). 

Considering the L group, the highest measurement (3.81 μm) was found on the L-9 

sample from dynamic subgroup. The loaded conventional subgroup showed more minor 

microgaps than loaded dynamic subgroup (Table 2, Figs. 11 and 12).  

The conventional specimens UL-A, L-9, and L-10, showed such a small IAM for 

some microscopic fields that it was impossible to quantify with optical microscopy (Fig. 

13). The value zero was considered for the measurement on those points and that effect 

is reflected in the final value. 

The non-parametric Wilcoxon rank-sum test was chosen to compare the central 

tendency between the studied populations. Regarding the L group, the null hypothesis 

under study considered that there was no difference between the medians of the two 

subgroups (conventional and dynamic). As can be seen on the boxplot (fig. 14), the 

median for the conventional loaded subgroup (0.65 μm) is clearly different from the 

median of the dynamic loaded subgroup (2.92 μm). Results from a one tailored analysis 

of the Wilcoxon rank-sum test allowed the conclusion that the IAM, on the 



 

conventional loaded subgroup, was lower than on the dynamic loaded subgroup (exact 

p-value = 0.05), rejecting therefore the null hypothesis.  

Comparing the central tendencies of the loaded and unloaded group (fig. 15), 

with recourse to the same statistical test, the null hypothesis established that there were 

no differences between the two groups. Although the median of the loaded group (2.6 

μm) was lower than the median of the unloaded group (5.21 μm), the comparison 

between both groups (one tailored analysis) did not allow the rejection of the null 

hypothesis for a confidence level of 5% (exact p-value = 0.086). 

  

 

4. DISCUSSION 

4.1. Fatigue test 

The results of this study point to a value between 1050 N and 1275 N, where it 

is expected that the tested specimens would have an increased life span. As these forces 

were applied with a 30° slope, they have a vertical component between 909 N and 1104 

N, and a horizontal component between 525 N and 637 N.  

These results indicate that the inclusion of DA does not affect the mechanical 

performance of the prosthesis under cyclic loads. The prosthesis fracture may occur for 

a vertical load of 909 N, value above the 841 N and 847 N described by Baca et al, 

Lindquist et al and Waltimo et al for the maximum vertical occlusion force (20-22).  



 

As no study published on this issue came to the authors’ knowledge, and due to 

the enormous variety of methodologies described for fatigue tests, the choice of ISO 

standard14801 is related to the fact that it establishes a methodology that can be 

replicated by different future studies on the same subject, allowing a valid comparison 

between possible different results. 

All but one of the fractures were found on the implants at embedding level. 

These results are aligned with Manzoor et al (23) once the 3 mm distance between the 

implant platform and the substrate corresponds clinically, to the biological width 

organization, resulting in a distant marginal bone level. Thus, the choice of the implant-

abutment connection, as a critical factor to preserve the bone level, could be of more 

critical importance than the use of DA. Furthermore, the ISO standard should consider 

different clinical scenarios with implant-abutment connections related with bone loss 

inferior to 3 mm.  

 

4.2. Implant-abutment microgap analysis  

The comparison between the loaded and unloaded groups did not allow for the 

rejection of the null hypothesis, meaning that the found differences were not statistically 

significant. Nevertheless, the results seem to depict a tendency to a decrease of the IAM 

on the loaded specimens, what suggest that the inclusion of DA does not have a 

negative effect. This is an important finding once a detrimental effect of the inclusion of 



 

DA would be an increase on the IAM, exactly the opposite of what the results suggest. 

Similar results have already been reported in bibliography. Contrarily to the studies of 

Nascimento et al (25) and Hoyer et al (26), that reported a joint opening after loading, 

Gehrke et al (27), studying four implant-abutment samples with internal connections, 

found a significant lower microgap after cyclic loading. It is worth mentioning, 

however, that one possible reason for the present study not being able to obtain a 

statistically significant difference between the two groups, could be explained by the 

reduced number of samples in each group. This possibility is sustained on the fact that 

the p-value (0.086) is approaching 0.05, value with which the difference would be 

considered statistically significant.  

Comparing dynamic and conventional abutments after loading, a statistically 

significant lower IAM could be found on the CA, which allowed for the rejection of the 

null hypothesis. Nevertheless, confronted with previous publications, the present study 

shows lower values than those reported on clinical studies. Scarano et al (28), measuring 

the microgap on 272 retrieved implants, found an IAM mean of 61.3 μm on 170 screw-

retained prosthesis and an IAM mean of 40.4 μm on 102 cement-retained prosthesis. 

Compared with in vitro studies, this experiment obtained similar results. Dias et al (29), 

comparing the IAM on external hexagon implants from five different companies, 

concluded that it was lower than 3 μm for all specimens. 



 

 It is also worth mentioning that the referred studies have not elucidated whether 

casting or milling technologies were used to obtain the samples. This information is 

considered of paramount importance once the scientific evidence indicates a better fit of 

milled structures (36-39).  

These results can also be discussed, taking into consideration the differences 

between experimental and clinical conditions. Clinically, the plaster models preparation 

requires the use of materials with dimensional variations within the curing process. 

Overcoming these issues, the tested specimens were obtained by a milling process 

directly from computer assisted design. The implants and screws were provided by the 

same company. As a result, the adaptation between the components of each specimen 

showed an excellent passive fit that is difficult to recreate under clinical conditions, 

what constitutes a limitation for the clinical extrapolation of the results obtained on the 

present experiment. For this reason, the conduction of prospective clinical trials, which 

could be compared with the present study, would be an important future research. 

 

5. CONCLUSIONS 

The experimental tests performed did not show that the inclusion of DA in a 

milled framework would have a negative impact either on its mechanical performance 

under cyclic loading or on the IAM dimensions. The fatigue test results indicate that the 

samples would resist to a load correspondent to the maximum biting force value found 



 

in the bibliography and the IAM measurements showed that the cyclic load did not 

contribute to open the joint.  

Within the limitations of this study, the geometrical differences and the lower 

tightening torque do not seem to have any detrimental influence on the analyzed 

parameters, when a DA is used in combination with a CA, suggesting its safety of use. 

However, more in vitro studies and clinical trials are needed to confirm this 

conclusion. 
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Table 1 –Fatigue test results 

 

With a maximum load of 1050 N, three specimens completed the 5 million cycles 

without fracture. 

 

Specimen Level (%)*1 Load (N) *2 Results (number of 
cycles)*3 

1 80 2400 480 

2 80 2400 699 

3 65 1950 1,887 

4 65 1950 4,12 

5 50 1500 156,547 

6 50 1500 10,176 

7 42.5 1275 3,424,208 

8 35 1050 5,000,000 

9 35 1050 5,000,000 

10 35 1050 5,000,000 
 

*1 - The second column represents the relation between the applied load and the static 

load compressive test result. 



 

*2 - The third column represents the maximum load applied in each cycle.  
*3 - The last column represents the number of cycles before the interruption of the test. 

 

 

 
 

 

 

 

 

 

Table 2 – IAM analysis 
 

 

 

 

 

 

 

 
Unloaded Loaded 

UL-A UL-B L-8 L-9 L-10 

Conventional abutments 0.9 μm 12.8 μm 2.44 μm 0.5 μm 0.65 μm 

Dynamic abutments 3.32 μm 7.10 μm 2.76 μm 3.81 μm 2.92 μm 



 

 

 

 

 

 

 

 

 

Figure 1 
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Figure 15 

 

 

 

 

 

FIGURE CAPTIONS 



 

 

Figure 1 –– Dynamic abutment screw channel geometry. Sagittal cut of the assembly 

implant-screw-framework, showing the screw channel following a direction with an 

angulation of 20° with the implant major axis. 

 

Figure 2 – Screw differences. Comparison between conventional (left) and dynamic 

screw (right) geometries. 

 

Figure 3 – Screw differences. Comparison between conventional 1.2 mm hexagonal 

screw head (left) and dynamic screw head (right) geometry. 

 

Figure 4 - Screwdriver for dynamic screws. 

 

Figure 5 – Samples preparation and positioning. Silicone mold, acrylic resin prototype 

obtained by stereolithography and embedding material. 

 

Figure 6 - Samples preparation and positioning. Specimens on testing machine and 

supporting tools according to ISO 14801. 

Figure 7 - Samples preparation and positioning. Specimen magnification showing both 

different abutments (On the left the CA and on the right the DA) and the semi-sphere 

for the load appliance. 



 

 

Figure 8 - Samples for optical microscopy. A conventional screw channel abutment-

screw-implant complex is shown embedded in transparent epoxy resin for the 

microscopy analysis of the IAM.  

 

Figure 9 – S-N curve. Chart showing the applied load as a function of the number of 

cycles. When the samples reached 5 million cycles the test was interrupted.  

 

 Figure 10 – Example of a fractured sample where it can be seen the epoxy resin base 

and the fractured implants still connected to the prosthetic framework. The implants 

fracture occurred at the embedment level, reason why it is possible to observe the 

fractured part of the implant body still embedded in the resin. 

 

Figure 11- Optical microscopy images. Optical microscope image showing the IAM on 

specimen L-8, conventional abutment, with a 1,000x magnification and a calculated 

dimension of 2.44 μm. 

Figure 12 – Optical microscopy images. Optical microscope image showing the IAM on 

specimen L-8, dynamic abutment, with a 1,000x magnification and a calculated 

dimension of 2.76 μm. 

 



 

Figure 13 – Cold welding. Optical microscopic image of specimen L-9 for conventional 

abutments. A cold welding is suggested. However, SEM images could clarify IAM 

dimensions.  

 

Figure 14 - Boxplot of the obtained measurements for the conventional loaded and 

dynamic loaded subgroups. 

 

Figure 15 - Boxplots of the obtained measurements under unloaded and loaded 

conditions. 

 

 

 


