333 research outputs found

    THz-range free-electron laser ESR spectroscopy: techniques and applications in high magnetic fields

    Full text link
    The successful use of picosecond-pulse free-electron-laser (FEL) radiation for the continuous-wave THz-range electron spin resonance (ESR) spectroscopy has been demonstrated. The combination of two linac-based FELs (covering the wavelength range of 4 - 250 μ\mum) with pulsed magnetic fields up to 70 T allows for multi-frequency ESR spectroscopy in a frequency range of 1.2 - 75 THz with a spectral resolution better than 1%. The performance of the spectrometer is illustrated with ESR spectra obtained in the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and the low-dimensional organic material (C6_6H9_9N2_2)CuCl3_3.Comment: 9 pages, 9 figures. Rev. Sci. Instrum., accepte

    The New IR FEL Facility at the Fritz-Haber-Institut in Berlin

    Get PDF
    A mid-infrared oscillator FEL has been commissioned at the Fritz-Haber-Institut. The accelerator consists of a thermionic gridded gun, a subharmonic buncher and two S-band standing-wave copper structures [1,2]. It provides a final electron energy adjustable from 15 to 50 MeV, low longitudinal (<50 keV-ps) and transverse emittance (<20 π mm-mrad), at more than 200 pC bunch charge with a micro-pulse repetition rate of 1 GHz and a macro-pulse length of up to 15 μs. Regular user operation started in Nov. 2013 with 6 user stations. Pulsed radiation with up to 100 mJ macro-pulse energy at about 0.5% FWHM bandwidth is routinely produced in the wavelength range from 4 to 48 μm. We will describe the FEL design and its performance as determined by IR power, bandwidth, and micro-pulse length measurements. Further, an overview of the new FHI FEL facility and first user results will be given. The latter include, for instance, spectroscopy of bio-molecules (peptides and small proteins) conformer selected or embedded in superfluid helium nano-droplets at 0.4 K, as well as vibrational spectroscopy of mass-selected metal-oxide clusters and protonated water clusters in the gas phase

    Status of the Fritz Haber Institute THz FEL

    No full text
    The THz FEL at the Fritz Haber Institute (FHI) in Berlin is designed to deliver radiation from 4 to 400 microns. A single-plane-focusing undulator combined with a 5.4 m long cavity is used is the mid-IR (< 50 micron), while a two-plane-focusing undulator in combination with a 7.2 m long cavity with a 1-d waveguide for the optical mode is used for the far-IR. A key aspect of the accelerator performance is low longitudinal emittance, < 50 keV-psec, at 200 pC bunch charge and 50 MeV from a gridded thermionic electron source. We utilize twin accelerating structures separated by a chicane to deliver the required performance over the < 20 - 50 MeV energy range. The first structure operates at near fixed field while the second structure controls the output energy, which, under some conditions, requires running in a decelerating mode. "First Light" is targeted for the centennial of the FHI in October 2011 and we will describe progress in the commissioning of this device. Specifically, the measured performance of the accelerated electron beam will be compared to design simulations and the observed matching of the beam to the mid-IR wiggler will be described

    A Search for Selectrons and Squarks at HERA

    Get PDF
    Data from electron-proton collisions at a center-of-mass energy of 300 GeV are used for a search for selectrons and squarks within the framework of the minimal supersymmetric model. The decays of selectrons and squarks into the lightest supersymmetric particle lead to final states with an electron and hadrons accompanied by large missing energy and transverse momentum. No signal is found and new bounds on the existence of these particles are derived. At 95% confidence level the excluded region extends to 65 GeV for selectron and squark masses, and to 40 GeV for the mass of the lightest supersymmetric particle.Comment: 13 pages, latex, 6 Figure

    Low Q^2 Jet Production at HERA and Virtual Photon Structure

    Get PDF
    The transition between photoproduction and deep-inelastic scattering is investigated in jet production at the HERA ep collider, using data collected by the H1 experiment. Measurements of the differential inclusive jet cross-sections dsigep/dEt* and dsigmep/deta*, where Et* and eta* are the transverse energy and the pseudorapidity of the jets in the virtual photon-proton centre of mass frame, are presented for 0 < Q2 < 49 GeV2 and 0.3 < y < 0.6. The interpretation of the results in terms of the structure of the virtual photon is discussed. The data are best described by QCD calculations which include a partonic structure of the virtual photon that evolves with Q2.Comment: 20 pages, 5 Figure

    Hadron Production in Diffractive Deep-Inelastic Scattering

    Get PDF
    Characteristics of hadron production in diffractive deep-inelastic positron-proton scattering are studied using data collected in 1994 by the H1 experiment at HERA. The following distributions are measured in the centre-of-mass frame of the photon dissociation system: the hadronic energy flow, the Feynman-x (x_F) variable for charged particles, the squared transverse momentum of charged particles (p_T^{*2}), and the mean p_T^{*2} as a function of x_F. These distributions are compared with results in the gamma^* p centre-of-mass frame from inclusive deep-inelastic scattering in the fixed-target experiment EMC, and also with the predictions of several Monte Carlo calculations. The data are consistent with a picture in which the partonic structure of the diffractive exchange is dominated at low Q^2 by hard gluons.Comment: 16 pages, 6 figures, submitted to Phys. Lett.

    Measurement of D* Meson Cross Sections at HERA and Determination of the Gluon Density in the Proton using NLO QCD

    Get PDF
    With the H1 detector at the ep collider HERA, D* meson production cross sections have been measured in deep inelastic scattering with four-momentum transfers Q^2>2 GeV2 and in photoproduction at energies around W(gamma p)~ 88 GeV and 194 GeV. Next-to-Leading Order QCD calculations are found to describe the differential cross sections within theoretical and experimental uncertainties. Using these calculations, the NLO gluon momentum distribution in the proton, x_g g(x_g), has been extracted in the momentum fraction range 7.5x10^{-4}< x_g <4x10^{-2} at average scales mu^2 =25 to 50 GeV2. The gluon momentum fraction x_g has been obtained from the measured kinematics of the scattered electron and the D* meson in the final state. The results compare well with the gluon distribution obtained from the analysis of scaling violations of the proton structure function F_2.Comment: 27 pages, 9 figures, 2 tables, submitted to Nucl. Phys.
    corecore