63 research outputs found

    Modelling the high temperature behaviour of TBCs using sequentially coupled microstructural-mechanical FE analyses

    Get PDF
    Thermal barrier coatings provide a means of thermal insulation of gas turbine components exposed to elevated temperatures. They undergo severe microstructural changes and material degradation, which have been implemented in this work by means of a sequentially coupled microstructural mechanical calculation that made use of a self-consistent constitutive model within finite element calculations. Analyses for different temperatures and bond coat compositions were run, which reproduced the trends reported in previous research and identified the accumulation of high out-of-plane tensile stresses within the alumina layer as an additional phenomenon that could drive high temperature crack nucleation

    Anthropozoonotic parasites circulating in synanthropic and pacific colonies of South American sea lions (Otaria flavescens): non-invasive techniques data and a review of the literature

    Get PDF
    Since late 1970s, the southern Chilean city Valdivia constitutes home for a unique bachelor group of South American sea lions (Otaria flavescens), initially descendant from colonies at the Pacific coast, but now directly living in a freshwater habitat in close proximity to human population and a vast amount of wild and domestic animal species. In the framework of a parasitological monitoring program, 115 individual fecal samples were collected from synanthropic South American sea lions between March and May 2018. For comparative reasons, 79 individual fecal samples from two free-living O. flavescens colonies at the Pacific coast were also sampled. Coproscopical analyses revealed the presence of nine different parasite taxa in individual fecal samples, including two protozoan (Cryptosporidium spp. and Giardia spp.) and seven metazoan parasites (Anisakidae gen. spp., Diphyllobothriidae gen. spp., Ogmogaster heptalineatus, Trematoda indet. type 1, Trematoda indet. type 2, Otostrongylus circumlitus, and Parafilaroides spp.), and morphological and molecular characterizations of adult helminths confirmed identification of following species: Anisakis simplex/A. pegreffi, Pseudoterranova cattani, Contracaecum ogmorhini, and Adenocephalus pacificus. For the first time, the results of the current study show the presence of zoonotic relevant Giardia- and Cryptosporidium-infections in two free-ranging colonies of South American sea lions apart from human settlement. Furthermore, a detailed literature search of previous publications on the endoparasite fauna of South American sea lions was conducted, revealing reports of at least 50 protozoan and metazoan parasite taxa including findings of the current study. Thereby, at least 25 of reported taxa (50%) have been recorded to bear zoonotic potential. The present study illustrates a successful application of non-invasive screening methods and their applicability in the field of marine mammal parasitology, bringing new insights into the endogenous parasite fauna of South American sea lions in Southern Chile, including anthropozoonotic protozoan and metazoan taxa

    Endeudamiento. Un análisis estructural

    Get PDF
    El presente artículo relaciona la política de endeudamiento y la teoría de agencia, pero considerando la estructura de propiedad de las empresas chilenas. El análisis econométrico se realizó mediante relaciones de causalidad y efecto, por medio de ecuaciones estructurales (structural equations models(SEM)). Los resultados reflejan un predominio de la teoría de jerarquía para explicar el financiamiento. Las empresas con concentración accionarial prefieren financiar sus proyectos con recursos propios, luego endeudamiento para evitar la posible pérdida de control por parte de los accionistas mayoritarios. AbstractThis article show the debt policy and agency theory, but considering the ownership structure of Chilean companies. The econometric model was performed using causality and effect analysis , through structural equations models (SEM)) The results reflect a predominance of pecking order model to explain the financing as companies with shareholder concentration. Firms prefer to finance their projects with their own resources, then borrowing to avoid possible loss of control by majority shareholders

    Bottlenose dolphins (Tursiops truncatus) do also cast neutrophil extracellular traps against the apicomplexan parasite Neospora caninum

    Get PDF
    Neutrophil extracellular traps (NETs) are web-like structures composed of nuclear DNA decorated with histones and cytoplasmic peptides which antiparasitic properties have not previously been investigated in cetaceans. Polymorphonuclear neutrophils (PMN) were isolated from healthy bottlenose dolphins (Tursiops truncatus), and stimulated with Neospora caninum tachyzoites and the NETs-agonist zymosan. In vitro interactions of PMN with the tachyzoites resulted in rapid extrusion of NETs. For the demonstration and quantification of cetacean NETs, extracellular DNA was stained by using either Sytox Orange® or Pico Green®. Scanning electron microscopy (SEM) and fluorescence analyses demonstrated PMN-derived release of NETs upon exposure to tachyzoites of N. caninum. Co-localization studies of N. caninum induced cetacean NETs proved the presence of DNA adorned with histones (H1, H2A/H2B, H3, H4), neutrophil elastase (NE), myeloperoxidase (MPO) and pentraxin (PTX) confirming the molecular properties of mammalian NETosis. Dolphin-derived N. caninum-NETosis were efficiently suppressed by DNase I and diphenyleneiodonium (DPI) treatments. Our results indicate that cetacean-derived NETs represent an ancient, conserved and relevant defense effector mechanism of the host innate immune system against N. caninum and probably other related neozoan parasites circulating in the marine environment

    An overview of using small punch testing for mechanical characterization of MCrAlY bond coats

    Get PDF
    Considerable work has been carried out on overlay bond coats in the past several decades because of its excellent oxidation resistance and good adhesion between the top coat and superalloy substrate in the thermal barrier coating systems. Previous studies mainly focus on oxidation and diffusion behavior of these coatings. However, the mechanical behavior and the dominant fracture and deformation mechanisms of the overlay bond coats at different temperatures are still under investigation. Direct comparison between individual studies has not yet been achieved due to the fragmentary data on deposition processes, microstructure and, more apparently, the difficulty in accurately measuring the mechanical properties of thin coatings. One of the miniaturized specimen testing methods, small punch testing, appears to have the potential to provide such mechanical property measurements for thin coatings. The purpose of this paper is to give an overview of using small punch testing to evaluate material properties and to summarize the available mechanical properties that include the ductile-to-brittle transition and creep of MCrAlY bond coat alloys, in an attempt to understand the mechanical behavior of MCrAlY coatings over a broad temperature range

    Perinatal asphyxia: current status and approaches towards neuroprotective strategies, with focus on sentinel proteins

    Get PDF
    Delivery is a stressful and risky event menacing the newborn. The mother-dependent respiration has to be replaced by autonomous pulmonary breathing immediately after delivery. If delayed, it may lead to deficient oxygen supply compromising survival and development of the central nervous system. Lack of oxygen availability gives rise to depletion of NAD+ tissue stores, decrease of ATP formation, weakening of the electron transport pump and anaerobic metabolism and acidosis, leading necessarily to death if oxygenation is not promptly re-established. Re-oxygenation triggers a cascade of compensatory biochemical events to restore function, which may be accompanied by improper homeostasis and oxidative stress. Consequences may be incomplete recovery, or excess reactions that worsen the biological outcome by disturbed metabolism and/or imbalance produced by over-expression of alternative metabolic pathways. Perinatal asphyxia has been associated with severe neurological and psychiatric sequelae with delayed clinical onset. No specific treatments have yet been established. In the clinical setting, after resuscitation of an infant with birth asphyxia, the emphasis is on supportive therapy. Several interventions have been proposed to attenuate secondary neuronal injuries elicited by asphyxia, including hypothermia. Although promising, the clinical efficacy of hypothermia has not been fully demonstrated. It is evident that new approaches are warranted. The purpose of this review is to discuss the concept of sentinel proteins as targets for neuroprotection. Several sentinel proteins have been described to protect the integrity of the genome (e.g. PARP-1; XRCC1; DNA ligase IIIα; DNA polymerase β, ERCC2, DNA-dependent protein kinases). They act by eliciting metabolic cascades leading to (i) activation of cell survival and neurotrophic pathways; (ii) early and delayed programmed cell death, and (iii) promotion of cell proliferation, differentiation, neuritogenesis and synaptogenesis. It is proposed that sentinel proteins can be used as markers for characterising long-term effects of perinatal asphyxia, and as targets for novel therapeutic development and innovative strategies for neonatal care

    Physiology and pathophysiology of the vasopressin-regulated renal water reabsorption

    Get PDF
    To prevent dehydration, terrestrial animals and humans have developed a sensitive and versatile system to maintain their water homeostasis. In states of hypernatremia or hypovolemia, the antidiuretic hormone vasopressin (AVP) is released from the pituitary and binds its type-2 receptor in renal principal cells. This triggers an intracellular cAMP signaling cascade, which phosphorylates aquaporin-2 (AQP2) and targets the channel to the apical plasma membrane. Driven by an osmotic gradient, pro-urinary water then passes the membrane through AQP2 and leaves the cell on the basolateral side via AQP3 and AQP4 water channels. When water homeostasis is restored, AVP levels decline, and AQP2 is internalized from the plasma membrane, leaving the plasma membrane watertight again. The action of AVP is counterbalanced by several hormones like prostaglandin E2, bradykinin, dopamine, endothelin-1, acetylcholine, epidermal growth factor, and purines. Moreover, AQP2 is strongly involved in the pathophysiology of disorders characterized by renal concentrating defects, as well as conditions associated with severe water retention. This review focuses on our recent increase in understanding of the molecular mechanisms underlying AVP-regulated renal water transport in both health and disease
    corecore