695 research outputs found

    Structure and Strength of Dislocation Junctions: An Atomic Level Analysis

    Full text link
    The quasicontinuum method is used to simulate three-dimensional Lomer-Cottrell junctions both in the absence and in the presence of an applied stress. The simulations show that this type of junction is destroyed by an unzipping mechanism in which the dislocations that form the junction are gradually pulled apart along the junction segment. The calculated critical stress needed for breaking the junction is comparable to that predicted by line tension models. The simulations also demonstrate a strong influence of the initial dislocation line directions on the breaking mechanism, an effect that is neglected in the macroscopic treatment of the hardening effect of junctions.Comment: 4 pages, 3 figure

    Localized helium excitations in 4He_N-benzene clusters

    Full text link
    We compute ground and excited state properties of small helium clusters 4He_N containing a single benzene impurity molecule. Ground-state structures and energies are obtained for N=1,2,3,14 from importance-sampled, rigid-body diffusion Monte Carlo (DMC). Excited state energies due to helium vibrational motion near the molecule surface are evaluated using the projection operator, imaginary time spectral evolution (POITSE) method. We find excitation energies of up to ~23 K above the ground state. These states all possess vibrational character of helium atoms in a highly anisotropic potential due to the aromatic molecule, and can be categorized in terms of localized and collective vibrational modes. These results appear to provide precursors for a transition from localized to collective helium excitations at molecular nanosubstrates of increasing size. We discuss the implications of these results for analysis of anomalous spectral features in recent spectroscopic studies of large aromatic molecules in helium clusters.Comment: 15 pages, 5 figures, submitted to Phys. Rev.

    Low-Dose Imaging in a New Preclinical Total-Body PET/CT Scanner.

    Get PDF
    Ionizing radiation constitutes a health risk to imaging scientists and study animals. Both PET and CT produce ionizing radiation. CT doses in pre-clinical in vivo imaging typically range from 50 to 1,000 mGy and biological effects in mice at this dose range have been previously described. [ <sup>18</sup> F]FDG body doses in mice have been estimated to be in the range of 100 mGy for [ <sup>18</sup> F]FDG. Yearly, the average whole body doses due to handling of activity by PET technologists are reported to be 3-8 mSv. A preclinical PET/CT system is presented with design features which make it suitable for small animal low-dose imaging. The CT subsystem uses a X-source power that is optimized for small animal imaging. The system design incorporates a spatial beam shaper coupled with a highly sensitive flat-panel detector and very fast acquisition (<10 s) which allows for whole body scans with doses as low as 3 mGy. The mouse total-body PET subsystem uses a detector architecture based on continuous crystals, coupled to SiPM arrays and a readout based in rows and columns. The PET field of view is 150 mm axial and 80 mm transaxial. The high solid-angle coverage of the sample and the use of continuous crystals achieve a sensitivity of 9% (NEMA) that can be leveraged for use of low tracer doses and/or performing rapid scans. The low-dose imaging capabilities of the total-body PET subsystem were tested with NEMA phantoms, in tumor models, a mouse bone metabolism scan and a rat heart dynamic scan. The CT imaging capabilities were tested in mice and in a low contrast phantom. The PET low-dose phantom and animal experiments provide evidence that image quality suitable for preclinical PET studies is achieved. Furthermore, CT image contrast using low dose scan settings was suitable as a reference for PET scans. Total-body mouse PET/CT studies could be completed with total doses of <10 mGy

    Piecewise polynomial approximation of probability density functions with application to uncertainty quantification for stochastic PDEs

    Full text link
    The probability density function (PDF) associated with a given set of samples is approximated by a piecewise-linear polynomial constructed with respect to a binning of the sample space. The kernel functions are a compactly supported basis for the space of such polynomials, i.e. finite element hat functions, that are centered at the bin nodes rather than at the samples, as is the case for the standard kernel density estimation approach. This feature naturally provides an approximation that is scalable with respect to the sample size. On the other hand, unlike other strategies that use a finite element approach, the proposed approximation does not require the solution of a linear system. In addition, a simple rule that relates the bin size to the sample size eliminates the need for bandwidth selection procedures. The proposed density estimator has unitary integral, does not require a constraint to enforce positivity, and is consistent. The proposed approach is validated through numerical examples in which samples are drawn from known PDFs. The approach is also used to determine approximations of (unknown) PDFs associated with outputs of interest that depend on the solution of a stochastic partial differential equation

    The composition of the protosolar disk and the formation conditions for comets

    Get PDF
    Conditions in the protosolar nebula have left their mark in the composition of cometary volatiles, thought to be some of the most pristine material in the solar system. Cometary compositions represent the end point of processing that began in the parent molecular cloud core and continued through the collapse of that core to form the protosun and the solar nebula, and finally during the evolution of the solar nebula itself as the cometary bodies were accreting. Disentangling the effects of the various epochs on the final composition of a comet is complicated. But comets are not the only source of information about the solar nebula. Protostellar disks around young stars similar to the protosun provide a way of investigating the evolution of disks similar to the solar nebula while they are in the process of evolving to form their own solar systems. In this way we can learn about the physical and chemical conditions under which comets formed, and about the types of dynamical processing that shaped the solar system we see today. This paper summarizes some recent contributions to our understanding of both cometary volatiles and the composition, structure and evolution of protostellar disks.Comment: To appear in Space Science Reviews. The final publication is available at Springer via http://dx.doi.org/10.1007/s11214-015-0167-

    Does Intensity Modulated Radiation Therapy (IMRT) prevent additional toxicity of treating the pelvic lymph nodes compared to treatment of the prostate only?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To evaluate the risk of rectal, bladder and small bowel toxicity in intensity modulated radiation therapy (IMRT) of the prostate only compared to additional irradiation of the pelvic lymphatic region.</p> <p>Methods</p> <p>For ten patients with localized prostate cancer, IMRT plans with a simultaneous integrated boost (SIB) were generated for treatment of the prostate only (plan-PO) and for additional treatment of the pelvic lymph nodes (plan-WP). In plan-PO, doses of 60 Gy and 74 Gy (33 fractions) were prescribed to the seminal vesicles and to the prostate, respectively. Three plans-WP were generated with prescription doses of 46 Gy, 50.4 Gy and 54 Gy to the pelvic target volume; doses to the prostate and seminal vesicles were identical to plan-PO. The risk of rectal, bladder and small bowel toxicity was estimated based on NTCP calculations.</p> <p>Results</p> <p>Doses to the prostate were not significantly different between plan-PO and plan-WP and doses to the pelvic lymph nodes were as planned. Plan-WP resulted in increased doses to the rectum in the low-dose region ≀ 30 Gy, only, no difference was observed in the mid and high-dose region. Normal tissue complication probability (NTCP) for late rectal toxicity ranged between 5% and 8% with no significant difference between plan-PO and plan-WP. NTCP for late bladder toxicity was less than 1% for both plan-PO and plan-WP. The risk of small bowel toxicity was moderately increased for plan-WP.</p> <p>Discussion</p> <p>This retrospective planning study predicted similar risks of rectal, bladder and small bowel toxicity for IMRT treatment of the prostate only and for additional treatment of the pelvic lymph nodes.</p

    Theorizing transnational labour markets. A research heuristic based on the new economic sociology

    Get PDF
    Mense-Petermann U. Theorizing transnational labour markets. A research heuristic based on the new economic sociology. Global Networks. 2020;20(3):410-433.In this article, I suggest that transnational labour markets are characterized by their multi‐layered embeddedness, not only in national but also in transnational institutional settings. Hence, the national institutional factors formerly at the centre of sociological labour market theories insufficiently explain the newly emerging transnational labour markets. To account for the full complexity and institutional context of the latter, I propose an inductive theoretical approach to transnational labour markets and develop a research heuristic to instruct empirical studies about particular transnational labour markets and inductive theory building. This heuristic draws on analytical categories as developed by the new economic sociology of markets. The empirical example of the transnational labour market that matches eastern European workers to jobs in the German meat industry serves to illustrate how one can use this heuristic, which reveals some preliminary features of transnational labour markets compared with national ones, as well as some research gaps to be addressed by future studies

    What is new in surgical treatment of vesicoureteric reflux?

    Get PDF
    In addition to conventional open surgery and endoscopic techniques, laparoscopic correction of vesicoureteric reflux, sometimes even robot-assisted, is becoming an alternative surgical treatment modality for this condition in a number of centres around the world. At least for a subgroup of patients laparoscopists are trying to develop new techniques in an effort to combine the best of both worlds: the minimal invasiveness of the STING and the same lasting effectiveness as in open surgery. The efficacy and potential advantages or disadvantages of these techniques are still under investigation. The different laparoscopic techniques and available data are presented

    The immunosuppressive cytokine interleukin-4 increases the clonogenic potential of prostate stem-like cells by activation of STAT6 signalling

    Get PDF
    Interleukin-4 plays a critical role in the regulation of immune responses and has been detected at high levels in the tumour microenvironment of cancer patients, where concentrations correlate with the grade of malignancy. In prostate cancer, interleukin-4 has been associated with activation of the androgen receptor, increased proliferation and activation of survival pathways such as Akt and NF-ÎșB. However, its role in therapy resistance has not yet been determined. Here we investigate the influence of interleukin-4 on primary epithelial cells from prostate cancer patients. Our data demonstrate an increase in the clonogenic potential of these cells when cultured in the presence of interleukin-4. In addition, a Phospho-Kinase Array revealed that in contrast to previously published work, signal transducer and activator of transcription6 (STAT6) is the only signalling molecule activated after interleukin-4 treatment. Using the STAT6-specific inhibitor AS1517499 we could confirm the role of STAT6 in increasing colony-forming frequency. However, clonogenic recovery assays revealed that interleukin-4 does not rescue the effects of either irradiation or docetaxel treatment. We therefore propose that although the interleukin-4/STAT6 axis does not appear to be involved in therapy resistance, it does play a crucial role in the colony-forming abilities of the basal cell population in prostate cancer. IL-4 may therefore contribute to disease relapse by providing a niche that is favourable for the clonogenic growth of prostate cancer stem cells
    • 

    corecore