123 research outputs found

    Particle transport processes at slope environments - event driven flux across the Barents Sea continental margin

    No full text
    Recent studies of the vertical flux of organic matter into the deep ocean have prompted the search for key organic compounds (biomarkers) as tracers for its production, flux and burial into the sediment. Particulate matter was collected with sediment traps moored at the Barents Sea continental margin (75°11.78′N/12°29.21′E; water depth 2050 m) at 610, 1840 and 1950 m depth. The compositions of the organic material in the two bottoms near traps differ significantly. This difference cannot be the result of a change of the vertical sedimentation alone. A combination of biomarker analyses, quantitative microscopy and bulk parameter determinations on water and sediment trap samples is used in this study to demonstrate that a turbidity plume event at the shelf edge is a vehicle to transport organic and lithogenic particles at high velocities to the benthos of the lower continental margin. It is suggested that fine particles were advected into the trap at 1850 m, whereas the coarser fraction of higher settling velocities, passing several resuspension loops entered the lower trap

    A new method for measuring treadmill belt velocity fluctuations : effects of treadmill type, body mass and locomotion speed

    No full text
    Treadmills are essential to the study of human and animal locomotion as well as for applied diagnostics in both sports and medicine. The quantification of relevant biomechanical and physiological variables requires a precise regulation of treadmill belt velocity (TBV). Here, we present a novel method for time-efficient tracking of TBV using standard 3D motion capture technology. Further, we analyzed TBV fluctuations of four different treadmills as seven participants walked and ran at target speeds ranging from 1.0 to 4.5 m/s. Using the novel method, we show that TBV regulation differs between treadmill types, and that certain features of TBV regulation are affected by the subjects’ body mass and their locomotion speed. With higher body mass, the TBV reductions in the braking phase of stance became higher, even though this relationship differed between locomotion speeds and treadmill type (significant body mass × speed × treadmill type interaction). Average belt speeds varied between about 98 and 103% of the target speed. For three of the four treadmills, TBV reduction during the stance phase of running was more intense (> 5% target speed) and occurred earlier (before 50% of stance phase) unlike the typical overground center of mass velocity patterns reported in the literature. Overall, the results of this study emphasize the importance of monitoring TBV during locomotor research and applied diagnostics. We provide a novel method that is freely accessible on Matlab’s file exchange server (“getBeltVelocity.m”) allowing TBV tracking to become standard practice in locomotion research.

    The Large Cylindrical Drift Chamber of Tasso

    No full text
    We have built and operated a large cylindrical drift chamber for the TASSO experiment at the DESY storage ring, PETRA. The chamber has a length of 3.5 m, a diameter of 2.5 m, and a total of 2340 drift cells. The cells are arranged in 15 concentric layers such that tracks can be reconstructed in three dimensions. A spatial resolution of 220 ÎĽm has been achieved for tracks of normal incidence on the drift cells

    Enhanced particle fluxes and heterotrophic bacterial activities in Gulf of Mexico bottom waters following storm-induced sediment resuspension

    No full text
    Bottom nepheloid layers (BNLs) in the deep sea transport and remobilize considerable amounts of particulate matter, enhancing microbial cycling of organic matter in cold, deep water environments. We measured bacterial abundance, bacterial protein production, and activities of hydrolytic enzymes within and above a BNL that formed in the deep Mississippi Canyon, northern Gulf of Mexico, shortly after Hurricane Isaac had passed over the study area in late August 2012. The BNL was detected via beam attenuation in CTD casts over an area of at least 3.5 km2, extending up to 200 m above the seafloor at a water depth of ~1500 m. A large fraction of the suspended matter in the BNL consisted of resuspended sediments, as indicated by high levels of lithogenic material collected in near-bottom sediment traps shortly before the start of our sampling campaign. Observations of suspended particle abundance and sizes throughout the water column, using a combined camera-CTD system (marine snow camera, MSC), revealed the presence of macroaggregates (\u3e1 mm in diameter) within the BNL, indicating resuspension of canyon sediments. A distinct bacterial response to enhanced particle concentrations within the BNL was evident from the observation that the highest enzymatic activities (peptidase, β-glucosidase) and protein production (3H-leucine incorporation) were found within the most particle rich sections of the BNL. To investigate the effects of enhanced particle concentrations on bacterial activities in deep BNLs more directly, we conducted laboratory experiments with roller bottles filled with bottom water and amended with experimentally resuspended sediments from the study area. Macroaggregates formed within 1 day from resuspended sediments; by day 4 of the incubation bacterial cell numbers in treatments with resuspended sediments were more than twice as high as in those lacking sediment suspensions. Cell-specific enzymatic activities were also generally higher in the sediment-amended compared to the unamended treatments. The broader range and higher activities of polysaccharide hydrolases in the presence of resuspended sediments compared to the unamended water reflected enzymatic capabilities typical for benthic bacteria. Our data suggest that the formation of BNLs in the deep Gulf of Mexico can lead to transport of sedimentary organic matter into bottom waters, stimulating bacterial food web interactions. Such storm-induced resuspension may represent a possible mechanism for the redistribution of sedimented oil-fallout from the Deepwater Horizon spill in 2010
    • …
    corecore