184 research outputs found

    Long-Term Infection and Vertical Transmission of a Gammaretrovirus in a Foreign Host Species

    Get PDF
    Increasing evidence has indicated natural transspecies transmission of gammaretroviruses; however, viral-host interactions after initial xeno-exposure remain poorly understood. Potential association of xenotropic murine leukemia virus-related virus (XMRV) in patients with prostate cancer and chronic fatigue syndrome has attracted broad interests in this topic. Although recent studies have indicated that XMRV is unlikely a human pathogen, further understanding of XMRV xenoinfection would allow in vivo modeling of the initial steps of gammaretroviral interspecies transmission, evolution and dissemination in a new host population. In this study, we monitored the long-term consequences of XMRV infection and its possible vertical transmission in a permissive foreign host, wild-derived Mus pahari mice. One year post-infection, XMRV-infected mice showed no notable pathological changes, while proviral DNA was detected in three out of eight mice. XMRV-infected mice remained seropositive throughout the study although the levels of gp70 Env- and p30 capsid-specific antibodies gradually decreased. When vertical XMRV transmission was assessed, no viremia, humoral immune responses nor endogenization were observed in nine offspring from infected mothers, yet one offspring was found PCR-positive for XMRV-specific sequences. Amplified viral sequences from the offspring showed several mutations, including one amino acid deletion in the receptor binding domain of Env SU. Our results therefore demonstrate long-term asymptomatic infection, low incidence of vertical transmission and limited evolution of XMRV upon transspecies infection of a permissive new host, Mus pahari

    Identification of the Regulatory Logic Controlling Salmonella Pathoadaptation by the SsrA-SsrB Two-Component System

    Get PDF
    Sequence data from the past decade has laid bare the significance of horizontal gene transfer in creating genetic diversity in the bacterial world. Regulatory evolution, in which non-coding DNA is mutated to create new regulatory nodes, also contributes to this diversity to allow niche adaptation and the evolution of pathogenesis. To survive in the host environment, Salmonella enterica uses a type III secretion system and effector proteins, which are activated by the SsrA-SsrB two-component system in response to the host environment. To better understand the phenomenon of regulatory evolution in S. enterica, we defined the SsrB regulon and asked how this transcription factor interacts with the cis-regulatory region of target genes. Using ChIP-on-chip, cDNA hybridization, and comparative genomics analyses, we describe the SsrB-dependent regulon of ancestral and horizontally acquired genes. Further, we used a genetic screen and computational analyses integrating experimental data from S. enterica and sequence data from an orthologous regulatory system in the insect endosymbiont, Sodalis glossinidius, to identify the conserved yet flexible palindrome sequence that defines DNA recognition by SsrB. Mutational analysis of a representative promoter validated this palindrome as the minimal architecture needed for regulatory input by SsrB. These data provide a high-resolution map of a regulatory network and the underlying logic enabling pathogen adaptation to a host

    Transcriptome Profiling of Citrus Fruit Response to Huanglongbing Disease

    Get PDF
    Huanglongbing (HLB) or “citrus greening” is the most destructive citrus disease worldwide. In this work, we studied host responses of citrus to infection with Candidatus Liberibacter asiaticus (CaLas) using next-generation sequencing technologies. A deep mRNA profile was obtained from peel of healthy and HLB-affected fruit. It was followed by pathway and protein-protein network analysis and quantitative real time PCR analysis of highly regulated genes. We identified differentially regulated pathways and constructed networks that provide a deep insight into the metabolism of affected fruit. Data mining revealed that HLB enhanced transcription of genes involved in the light reactions of photosynthesis and in ATP synthesis. Activation of protein degradation and misfolding processes were observed at the transcriptomic level. Transcripts for heat shock proteins were down-regulated at all disease stages, resulting in further protein misfolding. HLB strongly affected pathways involved in source-sink communication, including sucrose and starch metabolism and hormone synthesis and signaling. Transcription of several genes involved in the synthesis and signal transduction of cytokinins and gibberellins was repressed while that of genes involved in ethylene pathways was induced. CaLas infection triggered a response via both the salicylic acid and jasmonic acid pathways and increased the transcript abundance of several members of the WRKY family of transcription factors. Findings focused on the fruit provide valuable insight to understanding the mechanisms of the HLB-induced fruit disorder and eventually developing methods based on small molecule applications to mitigate its devastating effects on fruit production

    A hope to believe in: a transition programme to support mature students' access to Higher Education

    Get PDF
    This chapter discusses a case-study from a Higher Education institution in Surrey, where a project of pedagogical innovation, the ‘Transition Programme’, successfully solved the paradoxical status of selective procedures that are caught between the principle of inclusiveness within the widening participation agenda and the contrasting principle of recruiting with integrity. The chapter is motivated by four main aims. The first aim is to use hope to contextualise sociologically the motivations underpinning mature applicants’ choice to access Higher Education. The second aim is to approach such choice as a movement from the familiar world to a more complex social world, characterised by risky decision. A third, and probably central, aim is to criticise the implications of selective processes for mature applicants’ trust in the Higher Education system, as well as their well-being, self-esteem and happiness. Finally, a fourth aim is for the author to re-contextualise within a discourse centred on hope in the Transition Programme

    Evolutionary conservation and in vitro reconstitution of microsporidian iron–sulfur cluster biosynthesis

    Get PDF
    This work was supported by Marie Curie Postdoctoral Fellowships to T.A.W., E. H. and S. L., a European Research Council Advanced Investigator Grant (ERC-2010-AdG-268701) to T.M.E., and a Wellcome Trust Programme Grant (number 045404) to T.M.E. and J.M.L. R.L. acknowledges generous financial support from Deutsche Forschungsgemeinschaft (SFB 593, SFB 987, GRK 1216, LI 415/5), LOEWE program of state Hessen, Max-Planck Gesellschaft, von Behring-Röntgen StiftungMicrosporidians are a diverse group of obligate intracellular parasites that have minimized their genome content and simplified their sub-cellular structures by reductive evolution. Functional studies are limited because we lack reliable genetic tools for their manipulation. Here, we demonstrate that the cristae-deficient mitochondrion (mitosome) of the microsporidian Trachipleistophora hominis is the functional site of iron-sulphur cluster (ISC) assembly, which we suggest is the essential task of this organelle. Cell fractionation, fluorescence imaging and fine-scale immunoelectron microscopy demonstrate that mitosomes contain a complete pathway for [2Fe-2S] cluster biosynthesis that we biochemically reconstituted using purified recombinant mitosomal ISC proteins. Reconstitution proceeded as rapidly and efficiently as observed for yeast or fungal mitochondrial ISC components. Core components of the T. hominis cytosolic iron-sulphur protein assembly (CIA) pathway were also identified including the essential Cfd1-Nbp35 scaffold complex that assembles a [4Fe-4S] cluster as shown by spectroscopic methods in vitro. Phylogenetic analyses reveal that both the ISC and CIA biosynthetic pathways are predominantly bacterial, but their cytosolic and nuclear target Fe/S proteins are mainly archaeal. This mixed evolutionary history of the Fe/S-related proteins and pathways, and their strong conservation among highly reduced parasites, provides additional compelling evidence for the ancient chimeric ancestry of eukaryotes.Publisher PDFPeer reviewe

    High-Density Transcriptional Initiation Signals Underline Genomic Islands in Bacteria

    Get PDF
    Genomic islands (GIs), frequently associated with the pathogenicity of bacteria and having a substantial influence on bacterial evolution, are groups of “alien” elements which probably undergo special temporal–spatial regulation in the host genome. Are there particular hallmark transcriptional signals for these “exotic” regions? We here explore the potential transcriptional signals that underline the GIs beyond the conventional views on basic sequence composition, such as codon usage and GC property bias. It showed that there is a significant enrichment of the transcription start positions (TSPs) in the GI regions compared to the whole genome of Salmonella enterica and Escherichia coli. There was up to a four-fold increase for the 70% GIs, implying high-density TSPs profile can potentially differentiate the GI regions. Based on this feature, we developed a new sliding window method GIST, Genomic-island Identification by Signals of Transcription, to identify these regions. Subsequently, we compared the known GI-associated features of the GIs detected by GIST and by the existing method Islandviewer to those of the whole genome. Our method demonstrates high sensitivity in detecting GIs harboring genes with biased GI-like function, preferred subcellular localization, skewed GC property, shorter gene length and biased “non-optimal” codon usage. The special transcriptional signals discovered here may contribute to the coordinate expression regulation of foreign genes. Finally, by using GIST, we detected many interesting GIs in the 2011 German E. coli O104:H4 outbreak strain TY-2482, including the microcin H47 system and gene cluster ycgXEFZ-ymgABC that activates the production of biofilm matrix. The aforesaid findings highlight the power of GIST to predict GIs with distinct intrinsic features to the genome. The heterogeneity of cumulative TSPs profiles may not only be a better identity for “alien” regions, but also provide hints to the special evolutionary course and transcriptional regulation of GI regions

    A comprehensive overview of radioguided surgery using gamma detection probe technology

    Get PDF
    The concept of radioguided surgery, which was first developed some 60 years ago, involves the use of a radiation detection probe system for the intraoperative detection of radionuclides. The use of gamma detection probe technology in radioguided surgery has tremendously expanded and has evolved into what is now considered an established discipline within the practice of surgery, revolutionizing the surgical management of many malignancies, including breast cancer, melanoma, and colorectal cancer, as well as the surgical management of parathyroid disease. The impact of radioguided surgery on the surgical management of cancer patients includes providing vital and real-time information to the surgeon regarding the location and extent of disease, as well as regarding the assessment of surgical resection margins. Additionally, it has allowed the surgeon to minimize the surgical invasiveness of many diagnostic and therapeutic procedures, while still maintaining maximum benefit to the cancer patient. In the current review, we have attempted to comprehensively evaluate the history, technical aspects, and clinical applications of radioguided surgery using gamma detection probe technology

    Autophagy: Regulation and role in disease

    Full text link
    corecore