65 research outputs found

    Resonance scattering and singularities of the scattering function

    Full text link
    Recent studies of transport phenomena with complex potentials are explained by generic square root singularities of spectrum and eigenfunctions of non-Hermitian Hamiltonians. Using a two channel problem we demonstrate that such singularities produce a significant effect upon the pole behaviour of the scattering matrix, and more significantly upon the associated residues. This mechanism explains why by proper choice of the system parameters the resonance cross section is increased drastically in one channel and suppressed in the other channel.Comment: 4 pages, 3 figure

    Transition from Gaussian-orthogonal to Gaussian-unitary ensemble in a microwave billiard with threefold symmetry

    Full text link
    Recently it has been shown that time-reversal invariant systems with discrete symmetries may display in certain irreducible subspaces spectral statistics corresponding to the Gaussian unitary ensemble (GUE) rather than to the expected orthogonal one (GOE). A Kramers type degeneracy is predicted in such situations. We present results for a microwave billiard with a threefold rotational symmetry and with the option to display or break a reflection symmetry. This allows us to observe the change from GOE to GUE statistics for one subset of levels. Since it was not possible to separate the three subspectra reliably, the number variances for the superimposed spectra were studied. The experimental results are compared with a theoretical and numerical study considering the effects of level splitting and level loss

    Scanning Fourier Spectroscopy: A microwave analog study to image transmission paths in quantum dots

    Full text link
    We use a microwave cavity to investigate the influence of a movable absorbing center on the wave function of an open quantum dot. Our study shows that the absorber acts as a position-selective probe, which may be used to suppress those wave function states that exhibit an enhancement of their probability density near the region where the impurity is located. For an experimental probe of this wave function selection, we develop a technique that we refer to as scanning Fourier spectroscopy, which allows us to identify, and map out, the structure of the classical trajectories that are important for transmission through the cavity.Comment: 4 pages, 5 figure

    Why dynamos are prone to reversals

    Full text link
    In a recent paper (Phys. Rev. Lett. 94 (2005), 184506; physics/0411050) it was shown that a simple mean-field dynamo model with a spherically symmetric helical turbulence parameter alpha can exhibit a number of features which are typical for Earth's magnetic field reversals. In particular, the model produces asymmetric reversals, a positive correlation of field strength and interval length, and a bimodal field distribution. All these features are attributable to the magnetic field dynamics in the vicinity of an exceptional point of the spectrum of the non-selfadjoint dynamo operator. The negative slope of the growth rate curve between the nearby local maximum and the exceptional point makes the system unstable and drives it to the exceptional point and beyond into the oscillatory branch where the sign change happens. A weakness of this reversal model is the apparent necessity to fine-tune the magnetic Reynolds number and/or the radial profile of alpha. In the present paper, it is shown that this fine-tuning is not necessary in the case of higher supercriticality of the dynamo. Numerical examples and physical arguments are compiled to show that, with increasing magnetic Reynolds number, there is strong tendency for the exceptional point and the associated local maximum to move close to the zero growth rate line. Although exemplified again by the spherically symmetric alpha^2 dynamo model, the main idea of this ''self-tuning'' mechanism of saturated dynamos into a reversal-prone state seems well transferable to other dynamos. As a consequence, reversing dynamos might be much more typical and may occur much more frequently in nature than what could be expected from a purely kinematic perspective.Comment: 11 pages, 10 figure

    Resonance-assisted tunneling in near-integrable systems

    Get PDF
    Dynamical tunneling between symmetry related invariant tori is studied in the near-integrable regime. Using the kicked Harper model as an illustration, we show that the exponential decay of the wave functions in the classically forbidden region is modified due to coupling processes that are mediated by classical resonances. This mechanism leads to a substantial deviation of the splitting between quasi-degenerate eigenvalues from the purely exponential decrease with 1 / hbar obtained for the integrable system. A simple semiclassical framework, which takes into account the effect of the resonance substructure on the KAM tori, allows to quantitatively reproduce the behavior of the eigenvalue splittings.Comment: 4 pages, 2 figures, gzipped tar file, to appear in Phys. Rev. Lett, text slightly condensed compared to first versio

    High-throughput RNA structure probing reveals critical folding events during early 60S ribosome assembly in yeast

    Get PDF
    While the protein composition of various yeast 60S ribosomal subunit assembly intermediates has been studied in detail, little is known about ribosomal RNA (rRNA) structural rearrangements that take place during early 60S assembly steps. Using a high-throughput RNA structure probing method, we provide nucleotide resolution insights into rRNA structural rearrangements during nucleolar 60S assembly. Our results suggest that many rRNA-folding steps, such as folding of 5.8S rRNA, occur at a very specific stage of assembly, and propose that downstream nuclear assembly events can only continue once 5.8S folding has been completed. Our maps of nucleotide flexibility enable making predictions about the establishment of protein-rRNA interactions, providing intriguing insights into the temporal order of protein-rRNA as well as long-range inter-domain rRNA interactions. These data argue that many distant domains in the rRNA can assemble simultaneously during early 60S assembly and underscore the enormous complexity of 60S synthesis.Ribosome biogenesis is a dynamic process that involves the ordered assembly of ribosomal proteins and numerous RNA structural rearrangements. Here the authors apply ChemModSeq, a high-throughput RNA structure probing method, to quantitatively measure changes in RNA flexibility during the nucleolar stages of 60S assembly in yeast
    corecore