137 research outputs found

    Kinase profiling of liposarcomas using RNAi and drug screening assays identified druggable targets.

    Get PDF
    BackgroundLiposarcoma, the most common soft tissue tumor, is understudied cancer, and limited progress has been made in the treatment of metastatic disease. The Achilles heel of cancer often is their kinases that are excellent therapeutic targets. However, very limited knowledge exists of therapeutic critical kinase targets in liposarcoma that could be potentially used in disease management.MethodsLarge RNAi and small-molecule tyrosine kinase inhibitor screens were performed against the proliferative capacity of liposarcoma cell lines of different subtypes. Each small molecule inhibitor was either FDA approved or in a clinical trial.ResultsScreening assays identified several previously unrecognized targets including PTK2 and KIT in liposarcoma. We also observed that ponatinib, multi-targeted tyrosine kinase inhibitor, was the most effective drug with anti-growth effects against all cell lines. In vitro assays showed that ponatinib inhibited the clonogenic proliferation of liposarcoma, and this anti-growth effect was associated with apoptosis and cell cycle arrest at the G0/G1 phase as well as a decrease in the KIT signaling pathway. In addition, ponatinib inhibited in vivo growth of liposarcoma in a xenograft model.ConclusionsTwo large-scale kinase screenings identified novel liposarcoma targets and a FDA-approved inhibitor, ponatinib with clear anti-liposarcoma activity highlighting its potential therapy for treatment of this deadly tumor

    Immune cell proportions correlate with clinicogenomic features and ex vivo drug responses in acute myeloid leukemia

    Get PDF
    IntroductionThe implementation of small-molecule and immunotherapies in acute myeloid leukemia (AML) has been challenging due to genetic and epigenetic variability amongst patients. There are many potential mechanisms by which immune cells could influence small-molecule or immunotherapy responses, yet, this area remains understudied.MethodsHere we performed cell type enrichment analysis from over 560 AML patient bone marrow and peripheral blood samples from the Beat AML dataset to describe the functional immune landscape of AML.ResultsWe identify multiple cell types that significantly correlate with AML clinical and genetic features, and we also observe significant correlations of immune cell proportions with ex vivo small-molecule and immunotherapy responses. Additionally, we generated a signature of terminally exhausted T cells (Tex) and identified AML with high monocytic proportions as strongly correlating with increased proportions of these immunosuppressive T cells.DiscussionOur work, which is accessible through a new “Cell Type” module in our visualization platform (Vizome; http://vizome.org/), can be leveraged to investigate potential contributions of different immune cells on many facets of the biology of AML

    Belinostat and panobinostat (HDACI): in vitro and in vivo studies in thyroid cancer

    Get PDF
    PurposeAdvanced thyroid cancer responds poorly to most therapies. New therapies and combinations are needed. The aim of this study was to examine both in vitro and in vivo activity of two relatively new histone deacetylase inhibitors (HDACIs), belinostat and panobinostat, and a variety of tyrosine kinase inhibitors (TKIs) against a panel of nine human thyroid cancer cell lines.MethodsThe anti-proliferative activity and the effects of HDACIs, TKIs and their combinations on thyroid cancer cells were determined by cytotoxicity assays, microarray and immunoblot analyses. Synergism between HDACIs and TKIs was assessed by the median effects model of Chou-Talalay (Calcusyn(®)).ResultsBelinostat and panobinostat were active against the thyroid cancer cell lines irrespective of their mutational composition, and belinostat was effective in preventing growth of human thyroid cancer xenografts in immunodeficient mice. Further studies showed that both HDACIs induced apoptosis. HDACI also elevated acetylated histone 3, p21(Waf), and PARP, and decreased levels of phosphorylated ERK and AKT (Ser473). RNA assay analysis suggested both HDACIs modulated genes associated with the cell cycle, DNA damage and apoptosis. Most of the TKI (pazopanib, motesanib, sorafenib and dasatinib) were either inactive in vitro or were active only at high doses. However, the novel combinations of either pazopanib or dasatinib TKIs with either belinostat or panobinostat synergistically inhibited cell growth of thyroid cancer cells in vitro.ConclusionsIn summary, these HDACIs either alone or combined with selected TKIs may have a role in treatment of aggressive thyroid cancer

    Blocking airway mucous cell metaplasia by inhibiting EGFR antiapoptosis and IL-13 transdifferentiation signals

    Get PDF
    Epithelial hyperplasia and metaplasia are common features of inflammatory and neoplastic disease, but the basis for the altered epithelial phenotype is often uncertain. Here we show that long-term ciliated cell hyperplasia coincides with mucous (goblet) cell metaplasia after respiratory viral clearance in mouse airways. This chronic switch in epithelial behavior exhibits genetic susceptibility and depends on persistent activation of EGFR signaling to PI3K that prevents apoptosis of ciliated cells and on IL-13 signaling that promotes transdifferentiation of ciliated to goblet cells. Thus, EGFR blockade (using an irreversible EGFR kinase inhibitor designated EKB-569) prevents virus-induced increases in ciliated and goblet cells whereas IL-13 blockade (using s-IL-13Rα2-Fc) exacerbates ciliated cell hyperplasia but still inhibits goblet cell metaplasia. The distinct effects of EGFR and IL-13 inhibitors after viral reprogramming suggest that these combined therapeutic strategies may also correct epithelial architecture in the setting of airway inflammatory disorders characterized by a similar pattern of chronic EGFR activation, IL-13 expression, and ciliated-to-goblet cell metaplasia

    UNC2025, a MERTK Small-Molecule Inhibitor, Is Therapeutically Effective Alone and in Combination with Methotrexate in Leukemia Models

    Get PDF
    MERTK tyrosine kinase is ectopically expressed in 30–50% of acute lymphoblastic leukemias (ALL) and over 80% of acute myeloid leukemias (AML) and is a potential therapeutic target. Here, we evaluated the utility of UNC2025, a MERTK tyrosine kinase inhibitor, for treatment of acute leukemia

    Differentiation status of primary chronic myeloid leukemia cells affects sensitivity to BCR-ABL1 inhibitors

    Get PDF
    Tyrosine kinase inhibitors (TKI) are the mainstay treatment of BCR-ABL1-positive leukemia and virtually all patients with chronic myeloid leukemia in chronic phase (CP CML) respond to TKI therapy. However, there is limited information on the cellular mechanisms of response and particularly on the effect of cell differentiation state to TKI sensitivity in vivo and ex vivo/in vitro. We used multiple, independent high-throughput drug sensitivity and resistance testing platforms that collectively evaluated 295 oncology compounds to characterize ex vivo drug response profiles of primary cells freshly collected from newly-diagnosed patients with BCR-ABL1positive leukemia (n = 40) and healthy controls (n = 12). In contrast to the highly TKI-sensitive cells from blast phase CML and Philadelphia chromosome-positive acute lymphoblastic leukemia, primary CP CML cells were insensitive to TKI therapy ex vivo. Despite maintaining potent BCR-ABL1 inhibitory activity, ex vivo viability of cells was unaffected by TKIs. These findings were validated in two independent patient cohorts and analysis platforms. All CP CML patients under study responded to TKI therapy in vivo. When CP CML cells were sorted based on CD34 expression, the CD34-positive progenitor cells showed good sensitivity to TKIs, whereas the more mature CD34-negative cells were markedly less sensitive. Thus in CP CML, TKIs predominantly target the progenitor cell population while the differentiated leukemic cells (mostly cells from granulocytic series) are insensitive to BCR-ABL1 inhibition. These findings have implications for drug discovery in CP CML and indicate a fundamental biological difference between CP CML and advanced forms of BCR-ABL1-positive leukemia.Peer reviewe

    Clinical resistance to crenolanib in acute myeloid leukemia due to diverse molecular mechanisms.

    Get PDF
    FLT3 mutations are prevalent in AML patients and confer poor prognosis. Crenolanib, a potent type I pan-FLT3 inhibitor, is effective against both internal tandem duplications and resistance-conferring tyrosine kinase domain mutations. While crenolanib monotherapy has demonstrated clinical benefit in heavily pretreated relapsed/refractory AML patients, responses are transient and relapse eventually occurs. Here, to investigate the mechanisms of crenolanib resistance, we perform whole exome sequencing of AML patient samples before and after crenolanib treatment. Unlike other FLT3 inhibitors, crenolanib does not induce FLT3 secondary mutations, and mutations of the FLT3 gatekeeper residue are infrequent. Instead, mutations of NRAS and IDH2 arise, mostly as FLT3-independent subclones, while TET2 and IDH1 predominantly co-occur with FLT3-mutant clones and are enriched in crenolanib poor-responders. The remaining patients exhibit post-crenolanib expansion of mutations associated with epigenetic regulators, transcription factors, and cohesion factors, suggesting diverse genetic/epigenetic mechanisms of crenolanib resistance. Drug combinations in experimental models restore crenolanib sensitivity.This work was supported in part by The Leukemia & Lymphoma Society Beat AML Program, the V Foundation for Cancer Research, the Gabrielle’s Angel Foundation for Cancer Research and the National Cancer Institute (1R01CA183947–01; 1U01CA217862–01; 1U54CA224019-01; 3P30CA069533-18S5). H.Z. received a Collins Medical Trust research grant. S.D.B. was supported by the National Cancer Institute (5R01CA138744-08)

    Bayesian multi-source regression and monocyte-associated gene expression predict BCL-2 inhibitor resistance in acute myeloid leukemia

    Get PDF
    The FDA recently approved eight targeted therapies for acute myeloid leukemia (AML), including the BCL-2 inhibitor venetoclax. Maximizing efficacy of these treatments requires refining patient selection. To this end, we analyzed two recent AML studies profiling the gene expression and ex vivo drug response of primary patient samples. We find that ex vivo samples often exhibit a general sensitivity to (any) drug exposure, independent of drug target. We observe that this "general response across drugs" (GRD) is associated with FLT3-ITD mutations, clinical response to standard induction chemotherapy, and overall survival. Further, incorporating GRD into expression-based regression models trained on one of the studies improved their performance in predicting ex vivo response in the second study, thus signifying its relevance to precision oncology efforts. We find that venetoclax response is independent of GRD but instead show that it is linked to expression of monocyte-associated genes by developing and applying a multi-source Bayesian regression approach. The method shares information across studies to robustly identify biomarkers of drug response and is broadly applicable in integrative analyses
    corecore