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Bayesian multi-source regression and monocyte-associated
gene expression predict BCL-2 inhibitor resistance in acute
myeloid leukemia
Brian S. White 1,12,13✉, Suleiman A. Khan2,13, Mike J. Mason1, Muhammad Ammad-ud-din2, Swapnil Potdar2, Disha Malani 2,
Heikki Kuusanmäki2,3, Brian J. Druker 4,5, Caroline Heckman 2, Olli Kallioniemi2,6, Stephen E. Kurtz5, Kimmo Porkka7,
Cristina E. Tognon 4,5, Jeffrey W. Tyner 5, Tero Aittokallio 2,8,9,10,14, Krister Wennerberg2,3,14 and Justin Guinney1,11,14

The FDA recently approved eight targeted therapies for acute myeloid leukemia (AML), including the BCL-2 inhibitor venetoclax.
Maximizing efficacy of these treatments requires refining patient selection. To this end, we analyzed two recent AML studies
profiling the gene expression and ex vivo drug response of primary patient samples. We find that ex vivo samples often exhibit a
general sensitivity to (any) drug exposure, independent of drug target. We observe that this “general response across drugs” (GRD)
is associated with FLT3-ITD mutations, clinical response to standard induction chemotherapy, and overall survival. Further,
incorporating GRD into expression-based regression models trained on one of the studies improved their performance in
predicting ex vivo response in the second study, thus signifying its relevance to precision oncology efforts. We find that venetoclax
response is independent of GRD but instead show that it is linked to expression of monocyte-associated genes by developing and
applying a multi-source Bayesian regression approach. The method shares information across studies to robustly identify
biomarkers of drug response and is broadly applicable in integrative analyses.
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INTRODUCTION
Acute myeloid leukemia (AML) is genetically, epigenetically, and
transcriptionally heterogeneous. Nevertheless, patient treatment
has been uniform and for decades standard first-line treatment
has been “7+ 3” induction chemotherapy with cytarabine and an
anthracycline. In addition, a significant portion of AML patients are
not considered fit enough to tolerate induction chemotherapy
and are instead typically treated with low-dose cytarabine (LDAC)
and hypomethylating agents (HMAs), e.g., azacitidine or decita-
bine, that extend survival but are rarely curative. Together,
outcomes for adult AML patients (aged ≥20 years) remain very
poor, with the current 5-year relative survival rate at 24%1. The US
Food and Drug Administration (FDA) has recently shifted this
therapeutic landscape by approving eight drugs (enasidenib,
gemtuzumab ozogamicin, glasdegib, ivosidenib, midostaurin,
gilteritinib, venetoclax, and a liposome-encapsulated combination
of daunorubicin and cytarabine) for newly diagnosed or relapse
refractory patients, alone or in combination with LDAC or HMAs2,3.
Maximizing clinical benefit from these treatments will require
biomarkers for optimized patient selection and rational drug
combination strategies.
We used data from two independent studies that compre-

hensively profiled AML patient cohorts to address this need. In
both studies, ex vivo functional drug testing was performed on

freshly isolated mononuclear cells from AML patients and cell
viability was assessed following drug exposure across a
concentration range. The multi-center Beat AML initiative, led
by Oregon Health & Science University (OHSU), profiled 562
patient samples, including 411 with RNA sequencing (RNA-seq),
531 with exome sequencing, and 363 across a panel of 122
small-molecule inhibitors4. The AML Individualized Systems
Medicine program at the Institute for Molecular Medicine
Finland (FIMM) profiled 37 patients using RNA-seq, exome
sequencing, and across a panel of 470 inhibitors5. We performed
a comparative analysis, training regression models in one study
to predict ex vivo drug response in the other. In both studies, we
observed a tendency of a patient-derived sample to respond
consistently across all drugs. This “general response across
drugs” (GRD) correlated with complete response to standard
induction therapy and with patient leukemia-free survival.
Including GRD in the models significantly improved their
performance.
Several drugs did not conform to this trend, including the BCL-2

inhibitor venetoclax6, which was recently approved in combina-
tion with HMAs or LDAC for the treatment of AML in newly
diagnosed elderly patients or in those unfit for intensive
chemotherapy. Venetoclax in combination with azacitidine or
decitabine showed a favorable overall response rate [complete
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remission (CR)+ CR with incomplete count recovery (CRi)] of 67%
in a phase 1b study of 145 patients aged ≥65 years with newly
diagnosed AML7, whereas an overall response rate of 28% has
been observed for a similar patient population treated with
azacitidine alone8. Nevertheless, a large minority of patients do
not respond to venetoclax, while the majority who do ultimately
relapse7.
As such, recent efforts have attempted to refine patient

selection for venetoclax treatment. An ex vivo study9 suggested
that patients with monocytic AML have reduced sensitivity to
venetoclax. An in vivo study10 additionally demonstrated that
intra-patient heterogeneity arising from monocytic subclones
contributes to venetoclax resistance. Here we show that the
degree of patient monocyticity accounts for the majority of inter-
patient variation in resistance. We quantify this effect through a
robust signature comprised of monocyte-associated genes
identified via a Bayesian multi-source regression (BMSR) method.
BMSR nominates drug biomarkers by performing a joint multi-
source analysis across the OHSU and FIMM datasets. The method
is broadly applicable in integrating multiple expression datasets to
overcome technical variation, biological heterogeneity, and small
sample size that contribute to the low reproducibility of biomarker
studies11.
We extend BMSR to additionally perform simultaneous multi-

task analysis across multiple drugs to identify their common
biomarkers. Applying it to three mitogen-activated protein kinase
kinase (MEK) inhibitors (trametinib, PD184352, and selumetinib)
reveals that their response is correlated with the monocytic
venetoclax resistance signature. This, coupled with the observa-
tion that venetoclax treatment selects for pre-existing monocytic
subclones10, provides independent rationale for combination
therapies targeting the BCL-2 and MEK pathways12.

RESULTS
GRD is associated with improved patient outcome
The 122 OHSU drug panel and the 470 FIMM drug panel shared 87
drugs (71 of which are kinase inhibitors). We used these common
drugs to assess the consistency of drug response across the two
studies. We first quantified response as area under the
dose–response curve (AUC; Supplementary Figs. 1 and 2,
Supplementary Table 1, and Fig. 1). Responses were positively
correlated across drugs in each dataset [OHSU: 84% of Pearson
correlation rs are positive, mean r= 0.22, 95% confidence interval
(CI)=−0.22 to 0.59; FIMM: 85% positive r, mean r= 0.33, 95%
CI=−0.29 to 0.83; Supplementary Fig. 3]. We measured the cross-
study correlation of the intra-study drug–drug correlations, i.e., the
“correlation of correlations,” a general measure of interstudy
consistency (r= 0.35, p < 10−10; Supplementary Fig. 3). As
expected, correlations were higher when restricted to drugs with
a common target, including for 5 cyclin-dependent kinase
inhibitors (r= 0.76), 5 epidermal growth factor receptor inhibitors
(r= 0.51), 7 vascular endothelial growth factor receptor inhibitors
(r= 0.61), 6 fms-like tyrosine kinase 3 (FLT3) inhibitors (r= 0.84),
and 4 mammalian target of rapamycin/phosphoinositide 3-kinase
inhibitors (r= 0.95). We also calculated each drug’s mean
response across patients and found these to be highly concordant
between the datasets (r= 0.67; p= 2.04 × 10−12; Supplementary
Fig. 4). Finally, we assessed the consistency of each individual
drug’s response across the two datasets. To do so, we represented
each drug in each dataset by a vector of its correlations to all other
drugs. For each drug, we then calculated the correlation between
these dataset- and drug-specific correlation vectors (Supplemen-
tary Fig. 5). This cross-dataset drug correlation was positively
associated with the drug’s range of response [i.e., interquartile
range (IQR) of unnormalized AUCs] in both the OHSU (r= 0.45;
p= 1.02 × 10−5) and FIMM (r= 0.47; p= 4.55 × 10−6) datasets. We

Fig. 1 A patient’s ex vivo responses are similar across common drugs. AUCs calculated across patient-derived ex vivo samples (columns)
and 87 drugs (rows) common to OHSU (a; n= 338) and FIMM (b; n= 37) datasets. Red values correspond to higher AUC or more sensitive
samples, blue are less sensitive, black are filtered, and gray are missing. Standardized AUCs (i.e., with mean zero and standard deviation one
across patients) displayed in heatmap. Raw AUCs displayed in top and side panels. General response across drugs (GRD) is mean of raw AUCs
for an individual patient over drugs; mean response across patients (MRP) is mean of raw AUCs for an individual drug over patients. Samples
ordered by GRD in each dataset. Drugs ordered by MRP in OHSU dataset. One sample displayed per patient, with sample assayed across the
highest number of drugs displayed in cases with multiple samples per patient. Class drug class, Diff/epi differentiation/epigenetic, HSP heat
shock protein.
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found no evidence that drug correlation was associated with its
class (analysis of variance p= 0.37).
Each patient sample tended to respond uniformly across all

drugs in the panel—e.g., many responded relatively poorly to all
drugs (blue; leftmost samples, Fig. 1), while a smaller number
responded relatively strongly to most drugs (red; rightmost
samples, Fig. 1). We describe this phenomenon as a sample’s
GRD, i.e., its mean AUC across all drugs. Notably, this trend held
also across the full drug panels of each dataset (OHSU: 122 drugs;
FIMM: 470 drugs; Supplementary Fig. 6), which are less biased
toward tyrosine kinase inhibitors (TKIs) than the shared set of
drugs. More specifically, we found that GRD computed across all
drugs in a dataset was strongly correlated (r > 0.9) with that
computed from the common set of drugs, the set of drugs that
excludes class III TKIs (of which FLT3 inhibitors are members), and
the set of drugs that excludes all TKIs (Supplementary Fig. 7).
Consistently, we found that GRD calculated from a random
selection of drugs was highly concordant with GRD calculated
from all drugs in the respective dataset for both the OHSU (mean r
across 100 bootstrap samples= 0.97; 95% CI= 0.95–0.98) and
FIMM (mean r= 0.99; 95% CI= 0.98–1.00) datasets. An observa-
tion similar to GRD, General Levels of Drug Sensitivity (GLDS), has
previously been reported across cell lines representing various
cancer types13.
GRD was higher in samples from patients who achieved a CR or

a CRi to standard induction chemotherapy relative to those
refractory to induction (two-sided Wilcoxon rank-sum test p=
0.02; Fig. 2a; GRD computed across common drugs). Consistently,
CR/CRi patients were enriched among those with high GRD
(enrichment p= 7.5 × 10−3; Supplementary Fig. 8). Notably,
patients in the top quartile of GRD showed improved overall
survival relative to those in the bottom quartile [Cox proportional
hazard ratio (HR)= 0.96, log-rank p= 0.01; Fig. 2b and Supple-
mentary Fig. 9]. These findings held when GRD was instead
computed across all drugs (two-sided Wilcoxon rank-sum test p=
8.2 × 10−4; HR= 0.95; log-rank p= 0.01; Supplementary Fig. 10).
Despite these associations, refractory patients were not

statistically enriched in extreme GRD values (enrichment p=
0.15; Supplementary Fig. 8). To understand this heterogeneity in
response, we examined clinical features, genes, and pathways that
differentiated refractory from CR/CRi patients among those with
low (bottom quartile) GRD. Increased age was associated with
refractory response among GRD-low patients (two-sided Wilcoxon

rank-sum test p= 9.0 × 10−3), though the trend was not significant
after correcting for testing of the multiple clinical variables
[Benjamini–Hochberg (BH)-adjusted p= 0.26; Supplementary
Table 2]. One hundred and twenty-two genes were differentially
expressed (false discovery rate (FDR) < 20%; Supplementary Tables
3 and 4), with lymphocyte costimulation, T cell receptor signaling,
antigen binding, and antigen receptor-mediated signaling (all
significant at an FDR < 20%) upregulated in refractory patients and
among the strongest enrichments (Supplementary Table 5).
Conversely, in examining GRD-high patients, we found that higher
creatinine levels trended with CR/CRi (two-sided Wilcoxon rank-
sum test p= 0.02; BH-adjusted p= 0.62; Supplementary Table 6).
Forty-six differentially expressed genes (FDR < 20%; Supplemen-
tary Table 7) were most strongly enriched within extracellular
pathways upregulated in CR/CRi patients (Supplementary Table 8).

GRD is associated with FLT3-ITD
Presence of internal tandem duplication in FLT3 (FLT3-ITD) was
positively associated with GRD in the OHSU dataset (BH-adjusted
two-sided Wilcoxon rank-sum test p= 6.86 × 10−8; Supplementary
Table 9). This positive association remained significant and
independent of NPM1 mutation status, ethnicity, age, and sex in
a multivariate analysis [R2= 0.26; F-statistic p= 6.97 × 10−10; two-
sided t test p= 4.95 × 10−8; Supplementary Fig. 11 and Supple-
mentary Table 10). We validated the FLT3-ITD/GRD association in
an independent AML dataset profiling expression and drug
response of ex vivo samples published by Tavor and colleagues14

(one-sided Wilcoxon rank-sum test p < 0.01; Supplementary Fig.
12). We also observed a consistent trend in the FIMM dataset (one-
sided Wilcoxon rank-sum test p= 0.08). Significantly, we found
that FLT3-ITD status remained associated with GRD even when the
latter was computed from a subset of drugs that excluded FLT3
inhibitors (Supplementary Fig. 13).
To determine whether GRD could be modeled using gene

expression data, we trained an expression-based ridge regression
model of GRD using the OHSU dataset (Supplementary Figs. 14–
19; Supplementary Table 3; see “Methods”). The model was
validated in the FIMM dataset, demonstrating good predictive
performance (r= 0.67; p= 5.6 × 10−6; Fig. 3a). We hypothesized
that robust biomarkers of GRD should be consistent between the
OHSU and FIMM datasets (e.g., having large positive model
coefficients in both datasets relative to other genes). To test this,

Fig. 2 Ex vivo general response across drugs is associated with clinical response and improved patient outcome. a GRD in patients who
achieve complete remission (CR) or complete remission with incomplete hematologic recovery (CRi) to standard induction chemotherapy
(n= 118) versus those refractory to induction (n= 50) in OHSU dataset. *Wilcoxon rank-sum test p < 0.05. b Kaplan–Meier survival curves of
patients in OHSU dataset with GRD above the upper quartile (red; “responders”; n= 42) and of those with GRD below the lower quartile (blue;
“non-responders”; n= 42). Data are right censored at 610 days. HR: Cox proportional hazard ratio. a, b GRD is computed across drugs common
to OHSU and FIMM datasets.
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we trained a GRD model on the FIMM dataset and compared the
model coefficients associated with each gene between the OHSU-
and FIMM-trained models. Unexpectedly, this did not reveal
candidate biomarkers with outlying coefficients in both datasets
(Fig. 3b). Nevertheless, we did confirm that the ABCB1 gene [i.e.,
Multidrug Resistance Protein 1 (MDR1)], encoding a drug efflux
pump and previously observed to be associated with GLDS13, was
negatively correlated with GRD in both datasets (Fig. 3b). Further,
the ABC transporter family was among the gene sets and
pathways having the strongest negative association with GRD
(Supplementary Tables 11–15).

BMSR identifies biomarkers jointly across studies
We reasoned that our inability to detect consistent biomarkers
through independent analysis of the two datasets resulted from
the highly correlated expression of subsets of genes (e.g., within a
pathway), thereby dampening the effect of any single gene and
hindering the identification of genes significantly impacting
response. This is further complicated by study site-specific
technical artifacts, biological variation, and small sample sizes, all
of which compound noise. These factors could be ameliorated by

performing regularization across multiple datasets simultaneously,
which would shrink the coefficients of all but one or a few of the
highly correlated genes toward zero.
To do so, we developed an integrative BMSR method that

detects consistent and robust biomarkers through joint analysis of
the two datasets. BMSR assumes that the biomarker expression/
drug response relationship is similar across multiple datasets but
allows for relatively small differences due to technical noise,
biological variation, or clinical heterogeneity of different patient
populations. It achieves this by modeling the contribution to the
response by gene g in dataset d (i.e., the regression coefficient
βðdÞg ) as arising from a mean contribution (i.e., βg) for that gene that
is shared across datasets (see “Methods”). BMSR effectively
performs regularization on the shared βg rather than the
dataset-specific coefficient βðdÞg through a prior distribution, which
acts as a penalty term in a non-Bayesian/frequentist formulation.
For two genes g1 and g2 that are correlated with response, this
approach encourages (but does not guarantee) that the shared
coefficient of one of them be shrunk to zero by exploiting
correlations in the data rather than explicit biological annotations
(e.g., pathways).
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Fig. 3 Integrative analysis reveals growth-, apoptosis-, and drug efflux-associated biomarkers of general response across drugs.
a, c Observed (x axis) versus model-predicted (y axis) GRD. a Expression-based ridge regression model trained on OHSU samples (n= 292) and
tested on FIMM samples (n= 37). c Expression-based Bayesian multi-source regression (BMSR) model trained using fivefold cross-validation on
combined OHSU and FIMM datasets (n= 263) and tested on held-out fold yielding median performance across the fivefolds (n= 66).
b, d Coefficients of genes (n= 2132) in OHSU (x axis) or FIMM (y axis) datasets following b training of ridge regression model independently
on both datasets or d training of BMSR model simultaneously on entirety of both datasets (n= 329). GRD is computed across drugs common
to OHSU and FIMM datasets. r: Pearson correlation; dashed line: identity line; blue line: linear regression fit; gray shading: 95% confidence
interval. Labeled genes were those having extremal (Stouffer’s p < 0.01) combined coefficients across both datasets, as well as ABCB1 (i.e.,
MDR1).
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Modeling GRD with the BMSR approach (Fig. 3c) revealed
candidate biomarkers (Fig. 3d and Supplementary Fig. 20) that
were distinctly separated from the bulk of non-contributing genes
(i.e., those with coefficients near zero in both datasets). Candidate
biomarkers included genes involved in cell proliferation [IL7R15

and NIBAN216], cell cycle [MAPK1217], cell growth [BCL218 and
S100A8/S100A919], apoptosis [BCL220, NIBAN221, S100A8/S100A922],
and drug response [BCL223]). Notably, these genes were near the
periphery of the ridge coefficient distribution (Fig. 3b), thus
demonstrating the consistency of the two methods. As expected,
candidate GRD biomarkers were also consistently correlated with
response to individual drugs (Supplementary Fig. 21).

Drug response is robustly predicted by gene expression
Responses could be significantly predicted (p < 0.01) using
expression-based ridge regression for 31 of the 87 drugs (Fig. 4
and Supplementary Table 16; median r= 0.33; 25th–75th percen-
tile= 0.04–0.51; all significant correlations were positive; see
“Methods”). Significantly predicted drugs included the heat shock
protein inhibitor tanespimycin, the immunomodulatory agent
lenalidomide, the bromodomain inhibitor JQ1, two apoptotic
modulators (nutlin-3 and venetoclax), and 26 kinase inhibitors.
Prediction performance was correlated with the spread of
response (i.e., IQR of unnormalized AUCs) in the FIMM validation
dataset (Supplementary Fig. 22; r= 0.36; p= 6.19 × 10−4). These
results reinforce the consistency of the two ex vivo studies
demonstrated by the drug–drug correlations above.
Using predicted GRD as a model variable in addition to gene

expression improved response-modeling performance (median
r= 0.43; 25th–75th percentile= 0.17–0.60) relative to modeling
based on gene expression variables alone (one-sided paired

Wilcoxon signed rank p= 3.45 × 10−4; Fig. 4). Using observed,
rather than predicted, GRD as a variable in addition to gene
expression further improved performance (median r= 0.63;
25th–75th percentile= 0.39–0.75) relative to using gene expres-
sion alone (one-sided paired Wilcoxon signed rank p= 4.71 ×
10−11; Fig. 4).
These results were largely independent of whether GRD was

computed across common drugs or all drugs in a dataset
(correlation r between common drug and all drug-based models
of observed versus predicted drug response correlations ≥0.96;
Supplementary Figs. 23 and 24). This was true despite decreased
performance in predicting GRD across all drugs (r= 0.52;
Supplementary Fig. 25) relative to across common drugs (r=
0.67; Fig. 3).
A previous study proposed a filtering strategy to combat

experimental and technical noise anticipated in large-scale drug
screens24. To ensure that our findings were robust to such noise,
we developed and applied a related outlier-removal approach
(Supplementary Figs. 26–31; see “Methods”). Since prediction
performance was not significantly different after removing outliers
(Supplementary Fig. 32; two-sided Wilcoxon rank-sum test p=
0.89; Supplementary Tables 17 and 18), subsequent analysis does
not exclude outliers.

Monocytic signature predicts venetoclax resistance
Having determined potential biomarkers of GRD above, we next
asked whether responses of individual drugs were driven solely by
GRD. To isolate drug-specific responses from general effects, we
compared prediction performance of models using both gene
expression and GRD as variables to that of models using only GRD
(i.e., effectively drug–GRD correlations). Drugs showing the great-
est specificity were the MEK1/2 inhibitors trametinib, PD184352,
and selumetinib and the BCL-2 inhibitor venetoclax (Supplemen-
tary Fig. 33). Of these, gene-based prediction performance was
highest for venetoclax (r= 0.84; p= 7.50 × 10−8; Supplementary
Fig. 34A).
BMSR analysis revealed that venetoclax response had a positive

association with the gene BCL2 encoding the drug target, as well
as strong negative correlations with CD14 and SLC15A3 (Fig. 5 and
Supplementary Figs. 34 and 35). SLC15A3 (Solute Carrier Family 15
Member 3) is highly expressed in monocytes at the protein25 and
mRNA26,27 levels, while CD14 encodes a canonical (classical)
monocyte cell surface marker28. As such, BMSR analysis indicated
that monocyte-associated genes are correlated with venetoclax
resistance. We confirmed that genes having expression correlated
with venetoclax resistance are enriched for a monocyte signature
(p= 2.0 × 10−4; Supplementary Fig. 36 and Supplementary Table
19). Both results are consistent with findings from Kuusanmäki
and colleagues that the myeloid differentiation stage of AML cells
impacts venetoclax response, with monocytic cells exhibiting
resistance to BCL-2 inhibition9.
As with GRD above, these candidate biomarkers contribute

consistently (i.e., with the same sign) to the ridge regression
model (Supplementary Fig. 34), but BMSR prioritizes a smaller set
of features with large coefficients. As a comparison, we also
applied minimum redundancy maximum relevance (mRMR), a
method that performs feature selection within a single dataset to
identify parsimonious feature sets29,30. mRMR identified a subset
of the BMSR-prioritized, monocyte-associated genes across both
datasets, but the individual genes selected differed. In particular,
across 200 random (bootstrap) samples of the datasets, mRMR
selected SLC15A3 across all random samples in the OHSU dataset
but only once in the FIMM dataset and, conversely, selected PSAP
across all random samples in the FIMM dataset but only once in
the OHSU dataset. mRMR identified all BMSR-prioritized,
monocyte-associated genes across one or more random samples;
however, no gene was selected more than twice across both

Fig. 4 Expression-based predictions of drug response indicate
concordance of independent ex vivo datasets and may be
improved by incorporating general response across drugs.
Performance (Pearson correlation between observed and model-
predicted drug response; y axis) of ridge regression models trained
on OHSU data and tested on FIMM data using genes as predictors
(Gene Expression), genes and GRD predicted by applying ridge
regression to gene expression (Gene Expression+ Predicted GRD),
or genes and GRD calculated from drug response data (Gene
Expression+Observed GRD). Each point corresponds to a drug
(n= 87). Drug d is excluded from observed and predicted GRD in
modeling d’s response. ****One-sided paired Wilcoxon signed rank
p < 0.0001; ***p < 0.001.

BS White et al.

5

Published in partnership with The Hormel Institute, University of Minnesota npj Precision Oncology (2021)    71 



datasets (Supplementary Table 20). Collectively, these results
demonstrate the biological consistency of the BMSR, ridge
regression, and mRMR analyses, while highlighting BMSR’s
motivating contribution of identifying a small set of features
concordantly across datasets.
Intriguingly, genes associated with venetoclax resistance were

also enriched for T and/or B cell-mediated pathways (Supplemen-
tary Tables 21–25). Further, we observed that venetoclax response
was positively associated with blast percentage of both peripheral
blood (r= 0.37; two-sided Wilcoxon rank-sum test p= 4.6 × 10−4)
and bone marrow (r= 0.43; p= 5.9 × 10−5; Supplementary Fig.
37). Nevertheless, several lines of evidence suggest that our results
are unlikely to be compromised by impure leukemic samples and/
or lymphocyte contamination. First, predicted levels of lympho-
cytes are lower and less variable than those of monocytes in both
datasets (Supplementary Fig. 38). Second, genes associated with
venetoclax resistance are more enriched for markers of monocytes
and other cell types within the monocytic lineage (i.e., macro-
phages) than for markers of lymphocytes and are also strongly
enriched in myeloid dendritic cells (Supplementary Table 19).
Finally, we controlled for potential confounding effects by
including lymphocyte levels as covariates in our ridge regression
models. Our findings were consistent with the original ridge
regression models: prediction results across drugs were highly
correlated between the two models (r > 0.99; Supplementary Fig.
39) and genes contributing most to the lymphocyte-controlled
model continued to show strong enrichments for markers of the
monocytic lineage (Supplementary Table 26).
Because technical or biological variation may contribute noise

to individual genes, we next sought to develop a robust signature
of venetoclax resistance that would mitigate these fluctuations. To
do so, we focused attention on monocyte-associated genes
prioritized by BMSR (see “Methods”), which, in addition to CD14
and SLC15A3, included BCL3, LILRB1, LRP1, MAFB, PSAP, and SLC7A7
(Fig. 5b). We compressed the expression of these genes into a
single enrichment-based signature of venetoclax resistance (see
“Methods”).
We sought to validate this signature (and its constituent genes)

across several independent conditions, drugs, and/or ex vivo
functional and transcriptomic profiles of AML (Fig. 6), including a
study by Lee and colleagues of drug sensitivity that profiled the
BCL-2/BCL-XL inhibitor navitoclax31, the ex vivo study by Tavor

and colleagues that profiled both venetoclax and navitoclax14, and
a second FIMM dataset that profiled venetoclax and navitoclax in
a stroma-derived conditioned medium (CM) that differed from the
mononuclear cell medium (MCM) of the above FIMM dataset32.
The signature was inversely correlated with venetoclax response
(i.e., correlated with resistance) in the Tavor dataset (r=−0.44;
p= 3.2 × 10−3). It also trended with resistance in the FIMM CM
dataset (r=−0.29; p= 0.17), with a lack of significance consistent
with the specific dampening of venetoclax response in CM relative
to MCM32. Despite this, the signature smoothed out the weak anti-
correlations of several genes (e.g., CD14 and LILRB1) as intended.
The monocytic signature was strongly anti-correlated with
navitoclax response in three datasets: FIMM (CM) (r=−0.60;
p= 2.22 × 10−4), FIMM (MCM) (r=−0.75; p= 1.06 × 10−7), and
Lee (r=−0.78; p= 2.83 × 10−7). All genes in the signature, with
the exception of BCL3, also validated against navitoclax in these
three datasets, though their correlation was often not as strong as
that of the signature itself. The signature trended with navitoclax
resistance in the Tavor dataset (r=−0.25; p= 0.11), with BCL3
again having the weakest association.
As a further validation of the robustness of the signature and of

the generality of our Bayesian approach, we used BMSR to jointly
analyze the Tavor and FIMM (CM) datasets. Following the
approach above, we defined a signature from the monocyte-
associated genes prioritized by the analysis. This revised signature
was highly correlated with the original FIMM/OHSU-derived
signature in the FIMM, FIMM (CM), OHSU, and Tavor datasets
(r ≥ 0.75; Supplementary Fig. 40). Finally, to demonstrate its
applicability to more than two datasets, we similarly applied
BMSR to three datasets, FIMM, OHSU, and Tavor, and again
observed that the resulting signature was highly correlated with
the original FIMM/OHSU-derived signature (r ≥ 0.95; Supplemen-
tary Fig. 41).
Several biomarkers of venetoclax response in AML have been

proposed at the protein [BCL-XL, MCL-1, and BCL-233] and mRNA
[BCL2, BCL2/MCL1 ratio, BCL2A1, CD11b, CD14, CD68, CD86, CLEC7A
(CD369), HOX gene family members, MCL1, S100A8, and
S100A99,34–37] levels. Of these, the monocytic signature, BCL2A1,
CD68, CD86, and CLEC7A were robust predictors across both BCL-
2-inhibitors (venetoclax or navitoclax), different cell culture
conditions, and datasets, with none performing best across all
conditions (Supplementary Fig. 42). Strikingly, all five were
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strongly correlated with one another (Supplementary Fig. 43) and
are highly expressed in monocytes27,38. These findings validate
our own monocytic signature and previously proposed,
monocyte-associated biomarkers as predictors of resistance to
BCL-2 inhibition in AML.

Monocytic signature predicts MEK inhibitor response
Similar to venetoclax, gene expression data improved the
prediction performance of the three MEK inhibitors, trametinib,
PD184352, and selumetinib, beyond that provided by GRD alone
(Supplementary Fig. 33). We therefore next sought to determine
biomarkers of their response. As the response of the MEK
inhibitors are strongly correlated with one another (r > 0.48;
Supplementary Fig. 44), we developed a Bayesian multi-source
multi-task regression (BMSMTR) approach that simultaneously
analyzes multiple datasets (i.e., multi-source, as above) and also
multiple drugs (i.e., multi-task; see “Methods”). Joint analysis of
trametinib, PD184352, and selumetinib with BMSMTR identified
monocytic genes as candidate biomarkers, including LRP1 and
CD300E (Supplementary Fig. 45), that are positively associated with
MEK inhibitor response. Hence, we hypothesized that the
monocytic signature defined above to be correlated with
venetoclax resistance would be correlated with MEK inhibitor
response. Indeed, we observed a positive correlation between the
response of each of the three MEK inhibitors and the monocytic
signature in both the OHSU and FIMM datasets, where BCL-2
inhibitor response is inversely correlated with MEK inhibitor
response (Supplementary Fig. 44). The association did not hold in
the FIMM CM dataset, where BCL-2 inhibitor response is not
significantly (inversely) (Supplementary Fig. 44) correlated with
MEK inhibitor response and where our hypothesis would not be
expected to hold.

DISCUSSION
We demonstrated consistency between two large-scale AML
studies that profiled ex vivo drug sensitivity and gene expression.
In both datasets, we observed that patient-derived samples
exhibited a GRD, i.e., a sample often responded uniformly across
drugs independent of target or mechanism of action—relatively

strongly to all drugs or relatively weakly to all drugs. GRD was
further associated with clinical endpoints. Finally, we developed a
BMSR method for biomarker discovery and applied it to reveal a
robust monocytic signature of BCL-2 inhibition in AML.
We demonstrated that the two studies were consistent: first,

drug–drug correlations were conserved across studies (Supple-
mentary Fig. 3); second, the mean response of each drug across
patients relative to that of the other drugs was also conserved
across studies (Supplementary Fig. 4); and, finally, regression
models trained on gene expression data in one study predicted
response in the second, independent study for 31 of the 87 drugs
(Fig. 4). Similar efforts comparing39 in vitro drug screens40,41

reported discordance in drug responses across the datasets. This
finding spurred considerable activity in the research commu-
nity24,42–47, which ultimately resolved certain discrepancies
between the Cancer Cell Line Encyclopedia (CCLE) and the
Genomics of Drug Sensitivity in Cancer (GDSC) studies, in part, by
harmonizing curve fitting methods applied across datasets and by
quantifying drug response via a modified AUC44,48. We also
employed AUC since it both intuitively and empirically (Supple-
mentary Figs. 1 and 2) provides a more robust summary of a multi-
parameter curve fit than does a single parameter such as EC50 or
IC50. A retrospective re-analysis of these in vitro studies applied
quality control filters to exclude curves that grossly violated the
assumptions that sensitivities range between 0 and 100% and that
they increase monotonically with drug concentration24. We
developed and applied related quality control measures (Supple-
mentary Figs. 26–31) and found they had little impact on
prediction performance of most drugs (Supplementary Fig. 32).
Nevertheless, even low-frequency technical noise is expected to
be observed in large-scale studies, and hence, we concur with
Safikhani and colleagues24 that its impact should be carefully
investigated, as we have done here.
Geeleher and colleagues13 reported a phenomenon similar to

GRD—GLDS—across cell lines spanning cancer types40,41,49,50.
They showed that conditioning on GLDS eliminated spurious
biomarker predictions while identifying evidence-supported
biomarkers that otherwise went undetected. We similarly showed
that including GRD in prediction models improved overall
accuracy (Fig. 4), thus demonstrating that the general trend
detected in vitro is active in patient-derived AML samples as well.
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Thus, precision oncology studies should account for both target-
specific and target-agnostic effects when correlating drug
response with biomarkers.
Our findings directly relate this trend to clinical endpoints:

increased GRD is associated with complete response to induction
therapy and to improved overall survival (Fig. 2). This generalizes
the previous observation that ex vivo response to individual drugs
may be correlated with AML remission status31. Further, we found
that patients with FLT3-ITD mutations have higher GRD. This result
held even when GRD was calculated from subsets of drugs that
excluded FLT3 inhibitors. Relatedly, Tavor and colleagues found
that patient-derived samples with high sensitivity across TKIs and
several other drugs were enriched in FLT3-ITD mutations relative
to resistant samples14. Collectively, these results suggest that FLT3-
ITD mutations may confer a generalized drug sensitivity. One such
mechanism for doing so may be through its association with
reduced levels of the ABCB1 drug efflux pump51. Indeed, our
expression-based analysis revealed that ABCB1 expression was
inversely correlated with GRD. Nevertheless, prior results relating
ABCB1 expression to ex vivo response to agents used in induction
therapy have been inconsistent51–53. Additionally, the modest
correlation of candidate biomarkers with GRD (Supplementary Fig.
20), particularly relative to the consistent correlation observed for
venetoclax biomarkers (Supplementary Fig. 35), suggests that
mechanisms underlying GRD may involve a complex interplay of
multiple genes, possibly conditioned on FLT3 status.
We developed BMSR to mitigate factors that limit reproduci-

bility in prioritizing biomarkers in high-dimensional gene feature
spaces, including small sample sizes, correlated expression of
functionally related genes, technical variation across datasets, and
heterogeneity of patient populations54–57. It does so by perform-
ing integrated analysis11,58 across multiple heterogeneous data-
sets to increase cumulative sample size, both of which reduce the
likelihood of overfitting. BMSR shares information across the
datasets: gene expression values (or, more formally, the gene
expression coefficients) in each dataset are modeled as arising
from a shared prior distribution. BMSR differs from meta-analysis
methods that first analyze datasets independently before
combining effect sizes or p values across datasets. By regularizing
the prior’s hyperparameters, BMSR effectively selects features
simultaneously across the two datasets to prioritize a sparse set of
biomarkers. This is manifested in a small number of genes having
coefficients that are well separated from the majority of gene
coefficients in both datasets, in contrast to independent ridge
regression analysis across the two datasets in which coefficients
are evenly distributed with no clear separation indicating
candidate biomarkers (Fig. 3 and Supplementary Fig. 34).
We demonstrated BMSR’s generalizability by jointly analyzing

different pairs of datasets [FIMM and OHSU; FIMM (CM) and Tavor]
and by analyzing a dataset trio (FIMM, OHSU, and Tavor;
Supplementary Figs. 40 and 41). As such, we anticipate BMSR will
have broad applicability in integrative biomarker studies. However,
such analyses are often plagued by the effort required to
harmonize multiple datasets. To address this issue, we collaborated
with the developers of ORCESTRA in the Haibe-Kains laboratory to
make several of the datasets (the Tavor and OHSU datasets) more
broadly and easily accessible59. ORCESTRA is a cloud-based
platform that provides automated processing of pharmacoge-
nomic profiles and packages them into a fully documented and
DOI-indexed “PharmacoSet” (PSet). These PSets are compatible
with PharmacoGx, an open-source computational framework that
facilitates integrative studies of multiple pharmacogenomic
datasets through routines for standardized access and analysis60.
To provide a template for others in applying BMSR for integrative
analysis, we included a demo in our BMSR GitHub repository
(https://github.com/suleimank/bmsr) that downloads the Tavor
(https://doi.org/10.5281/zenodo.4585705) and OHSU (https://doi.
org/10.5281/zenodo.4582786) datasets from ORCESTRA and uses

the functions of PharmacoGx to predict biomarkers of venetoclax
response. Through our ongoing collaboration, we will also make
these datasets available through PharmacoDB (https://
pharmacodb.ca), a web application that similarly assembles
pharmacogenomic datasets into a single database for cross-study
analyses61. The online, interactive capabilities of PharmacoDB will
make these resources accessible beyond computational biologists
and those with programming skills.
BMSR revealed that venetoclax resistance is correlated with

expression of monocyte-associated genes (Fig. 5). We combined
these genes into a single signature that is robust to the variations
of its individual genes62 across datasets (Fig. 6). Additionally, we
showed that the venetoclax-derived signature strongly predicts
resistance to the BCL-2/BCL-XL inhibitor navitoclax. Resistance to
both venetoclax and navitoclax was significantly correlated with
the signature in standard culture conditions (MCM), though the
trends in a stroma-derived CM reached significance only for
navitoclax and not for venetoclax. This may have resulted from the
reduced sensitivity of AML cells to venetoclax observed in CM
relative to MCM, mediated by a switch from BCL-2- to BCL-XL-
dependent cell survival that has a less pronounced effect on
navitoclax32.
Our findings extend and support recent reports demonstrating

that monocytic cells are resistant to BCL-2 inhibition, whereas
myeloid progenitors exhibit sensitivity. Kuusanmäki and collea-
gues showed that differentiated cells from AML samples expres-
sing monocytic markers are less sensitive to venetoclax than
immature blasts9. They further showed that sensitivity to
venetoclax decreased along the differentiation spectrum, from
less differentiated AML samples [French-American-British subtype
M1] to more differentiated samples with significant monocytic
differentiation (M5 subtype). They concluded by associating
increased expression of monocyte markers CD14, CD11b, CD86,
and CD68 with decreased ex vivo responsiveness to venetoclax.
Among other identified biomarkers, Zhang and colleagues also
implicated high expression of CD14, as well as the monocyte-
associated CLEC7A (CD369), with reduced sensitivity to veneto-
clax36. We provide independent validation of these biomarkers,
confirming that leukemic cells expressing high levels of CD68,
CD86, and CLEC7A, in particular, are more resistant to BCL-2
inhibition via both venetoclax and navitoclax (Supplementary Fig.
42). Further, we identified a mostly non-overlapping, but strongly
correlated (Supplementary Fig. 43), set of genes highly expressed
in monocytes: BCL3, CD14, LILRB1, LRP1, MAFB, PSAP, SLC15A3, and
SLC7A7. We combined these genes into a per-sample monocytic
score using a straightforward approach that did not require
additional training or parameter turning. This signature was
competitive with CD68, CD86, and CLEC7A across BCL-2 inhibitors,
culture conditions, and datasets. Since neither the signature nor
the genes nominated by these two studies outperformed the
others across all conditions, it may be beneficial to combine them
for increased robustness, much as the signature itself smoothed
out variation in its constituent genes. Such an approach should be
validated in the future using independent data.
These results are likely to be of clinical relevance, as Pei and

colleagues demonstrated that phenotypically primitive AML is
sensitive to venetoclax in vivo, whereas monocytic AML is more
resistant10. Further, they showed that venetoclax (in combination
with azacitidine) selects for monocytic subclones present at
diagnosis. This resistance is associated with a loss of BCL-2
expression and a concomitant shift to MCL1 for survival that is
inherent in monocytic differentiation. MCL1 is itself stabilized by
extracellular signal-regulated kinase (ERK)63,64. As such, targeting
ERK via a MEK inhibitor has been shown to sensitize cells to the
BCL-2/BCL-XL inhibitor ABT-737 in vitro and in xenograft models65.
Targeting MCL1 has also been shown to forestall acquired
resistance to venetoclax in vitro66, while leukemic blasts resistant
to venetoclax are sensitive to MEK inhibition via trametinib
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ex vivo9. Finally, combination of venetoclax with the MEK inhibitor
cobimetinib exhibited synergy in vitro, inhibited growth ex vivo,
and reduced leukemia burden in xenografts12. Our work has
implications for the rational selection of patient groups for
combination therapies targeting these two pathways. Since the
monocytic signature is correlated with BCL-2 inhibitor resistance
and MEK inhibitor response, it may provide a means of
prospectively identifying patients for combination treatment.

METHODS
Drug–response curve fitting and filtering
We fit 3- (LL3) and 4-parameter log-logistic (LL4) curves to the
dose–response data using PharmacoGx60 and drc67 in R68, respectively.
We excluded non-AML patients or those exhibiting gross dissimilarities
across replicates from analysis. We excluded any drug–sample pair having
a concentration range outside the most common (dataset-specific)
concentration range for that corresponding drug. We further excluded a
drug–sample pair if it did not include all concentration points and only
analyzed one sample per drug–patient pair (see Supplementary Methods).
Additionally, we assessed the impact of an outlier-removal strategy that
excluded drug–sample pairs: (1) whose fits were not monotonically
increasing, (2) that had large differences between fits that did (LL3) and did
not (LL4) constrain the curve to asymptote to zero response at low drug
concentration, or (3) had a replicate screen (technical in OHSU and
biological in FIMM) to which it strongly differed (Supplementary Figs. 26–
31). However, we found that this outlier-removal strategy had little impact
on prediction performance (Supplementary Fig. 32) and hence did not
apply it in the analyses.

Bayesian regression analysis
BMSR models the gene coefficients in each dataset as a sample from a
shared, underlying data generating distribution and by regularizing the
mean of that distribution to provide parsimony. Formally, it performs joint
regression across all datasets constrained to a set of NG common genes as

yðdÞ � NðXðdÞβðdÞ; σðdÞIÞ
βðdÞ � Nðβ; 0:5Þ
βg � Nð0; λ2gτ2Þ;

(1)

where yðdÞ 2 RNd ´ 1 is the response vector for a particular drug across the
Nd patient samples in dataset d∈ {FIMM, OHSU}, XðdÞ 2 RNd ´NG is the
corresponding expression matrix over NG genes, βðdÞ 2 RNG ´ 1 is the gene
regression coefficient vector, I is the NG × NG identity matrix, and the
standard deviation σ(d) has a non-informative noise prior

σðdÞ � IGð1; 1Þ;
with IG(α, β) the Inverse Gamma distribution.
BMSR models coefficient vectors β(d) using the joint hierarchical prior

with the shared mean coefficient vector β 2 RNG ´ 1. It regularizes the scalar
components βg using the Finnish horse-shoe prior69

λg � Cþð0; 1Þ
τ � Cþð0; τ0Þ
τ0 ¼ p0

NG�p0

P
d
σðdÞ
ffiffiffiffi
Nd

p ;

where C+(μ, σ) is the half-Cauchy distribution with location μ and scale σ,
the scalar λg induces localized gene-wise regularization, and the scalar τ is
the global regularization parameter that induces the number of active
genes (p0) a priori. Collectively, this formulation encourages the dataset-
specific coefficients to either have large magnitude in both datasets (i.e.,
representing genes whose expression makes a large contribution to the
response) or small magnitude in both datasets (i.e., genes with little or no
contribution) and to have the same direction (i.e., sign) in both datasets.
BMSMTR simultaneously analyzes multiple datasets (i.e., multi-source, as

in BMSR) and also multiple drugs (i.e., multi-task) in a set of drugs I . It does
so by generalizing Eq. (1) according to

yðd;iÞ � N XðdÞβðdÞwðiÞ; σðdÞI
� �

;

with the response vector yðd;iÞ 2 RNd ´ 1 for dataset d and drug i 2 I
distributed about a mean that is a product of a factor X(d)β(d) common to
drugs in I and a factor w(i) ~ N(0.5, 0.5) specific to drug i.

The BMSR and BMSMTR models were implemented in STAN70, a platform
for statistical modeling that provides efficient automatic procedures for
Bayesian statistical inference. We performed inference using MCMC
sampling with 500 samples of the posterior and a burn-in of 500. BMSR
and BMSMTR are available at https://github.com/suleimank/bmsr.

Statistical analysis
Statistical analyses were performed in R68. Wilcoxon rank-sum test was
performed using wilcox.test. Fisher’s exact test was performed with
fisher.test. Linear regression was performed with lm. Forest plot for
multivariate linear regression was generated using the forestmodel
package.

Gene expression analysis
Ridge regression was performed using glmnet71. Genes used as variables
in (ridge, BMSR, and BMSMTR) regression models were filtered to exclude
those with low expression (Supplementary Figs. 14–17) and low variance
(Supplementary Figs. 18–19). Gene set enrichment was performed using
fgsea72, including relative to the set of monocyte marker genes defined
in CIBERSORT73. Genes differentially expressed in monocytes relative to
other cell populations were determined by applying limma74 to the
expression dataset GSE2475926. Immune cell fractions were computed with
CIBERSORT using non-log expression data and parameters QN=TRUE,
absolute=TRUE, and abs_method=“no.sumto1”. Expression of the genes
BCL3, CD14, LILRB1, LRP1, MAFB, PSAP, SLC15A3, and SLC7A7 was
compressed into a single enrichment score using GSVA75. This enrichment
score is the monocytic signature. Additional details are provided in
Supplementary Methods.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
We re-analyzed four datasets in this study. The OHSU/Beat AML dataset is available
on the Synapse data-sharing platform (https://www.synapse.org/#!Synapse:
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v1.p1), as supplementary data within the original manuscript4, and via ORCESTRA
(https://doi.org/10.5281/zenodo.4582786). Additionally, the OHSU dataset can be
interactively browsed using Vizome (www.vizome.org). Our re-analysis of the OHSU/
Beat AML drug response data are included in Supplementary Tables 1 and 17. The
FIMM (MCM) and FIMM (CM) RNA-seq data are available for re-analysis upon request
at a secure and GDPR-compliant data analysis data lake environment. Only aggregate
data can be downloaded from the data lake. The Lee dataset is available as
Supplementary Data within the original manuscript31. The Tavor dataset is available
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