538 research outputs found
Increased risk of HIV and other drug-related harms associated with injecting in public places: national bio-behavioural survey of people who inject drugs
Background:
Whilst injecting drugs in public places is considered a proxy for high risk behaviour among people who inject drugs (PWID), studies quantifying its relationship with multiple drug-related harms are lacking and none have examined this in the context of an ongoing HIV outbreak (located in Glasgow, Scotland). We aimed to: 1) estimate the prevalence of public injecting in Scotland and associated risk factors; and 2) estimate the association between public injecting and HIV, current HCV, overdose, and skin and soft tissue infections (SSTI).
Methods:
Cross-sectional, bio-behavioural survey (including dried blood spot testing to determine HIV and HCV infection) of 1469 current PWID (injected in last 6 months) recruited by independent interviewers from 139 harm reduction services across Scotland during 2017–18. Primary outcomes were: injecting in a public place (yes/no); HIV infection; current HCV infection; self-reported overdose in the last year (yes/no) and SSTI the last year (yes/no). Multi-variable logistic regression was used to determine factors associated with public injecting and to estimate the association between public injecting and drug-related harms (HIV, current HCV, overdose and SSTI).
Results:
Prevalence of public injecting was 16% overall in Scotland and 47% in Glasgow city centre. Factors associated with increased odds of public injecting were: recruitment in Glasgow city centre (aOR=5.45, 95% CI 3.48–8.54, p<0.001), homelessness (aOR=3.68, 95% CI 2.61–5.19, p<0.001), high alcohol consumption (aOR=2.42, 95% CI 1.69–3.44, p<0.001), high injection frequency (≥4 per day) (aOR=3.16, 95% CI 1.93–5.18, p<0.001) and cocaine injecting (aOR=1.46, 95% CI 1.00 to 2.13, p = 0.046). Odds were lower for those receiving opiate substitution therapy (OST) (aOR=0.37, 95% CI 0.24 to 0.56, p<0.001) and older age (per year increase) (aOR=0.97, 95% CI 0.95 to 0.99, p = 0.013). Public injecting was associated with an increased risk of HIV infection (aOR=2.11, 95% CI 1.13–3.92, p = 0.019), current HCV infection (aOR=1.49, 95% CI 1.01–2.19, p = 0.043), overdose (aOR=1.59, 95% CI 1.27–2.01, p<0.001) and SSTI (aOR=1.42, 95% CI 1.17–1.73, p<0.001).
Conclusions:
These findings highlight the need to address the additional harms observed among people who inject in public places and provide evidence to inform proposals in the UK and elsewhere to introduce facilities that offer safer drug consumption environments
High willingness to use drug consumption rooms among people who inject drugs in Scotland: findings from a national bio-behavioural survey among people who inject drugs
Background To address rising drug-related harms (including significant transmission of HIV) among people who inject drugs (PWID) in Glasgow, officials have proposed the introduction of the UK's first drug consumption room (DCR) in Glasgow city centre. Using a nationally representative sample, this study aimed to determine willingness to use a DCR among PWID nationally, in Glasgow city centre (the proposed DCR location), other Scottish city centres (excluding Glasgow) and the rest of Scotland (excluding city centres). Methods Bio-behavioural survey, of 1469 current PWID (injected in last 6 months) across Scotland during 2017-18. Willingness to use DCRs was examined by drug-related risk behaviours and harms overall in Scotland, and then stratified by Glasgow city centre (n = 219), other Scottish city centres (n = 226) and the rest of Scotland (n = 1024). Results The majority of PWID overall in Scotland (75%) were willing to use a DCR; willingness was higher among those recruited in Glasgow city centre (83%) and other Scottish city centres (83%), compared to the rest of Scotland (72%) (p < 0.001). Willingness was greater among PWID who reported (compared to those who did not report) injecting heroin (76%, p = 0.002), cocaine injecting (79%, p = 0.014), homelessness (86%, p < 0.001), public injecting (87%, p < 0.001) and an overdose (80%, p = 0.026). Willingness was found to be associated with a cumulative multiple risk variable: increased from 66% among those with a score of zero to 85% with a score of at least three (p < 0.001). Conclusions The vast majority of PWID at greatest risk of drug-related harm in Glasgow and elsewhere in Scotland would be willing to use a DCR, supporting proposals for the introduction of DCRs nationally
SubHaloes going Notts: The SubHalo-Finder Comparison Project
We present a detailed comparison of the substructure properties of a single
Milky Way sized dark matter halo from the Aquarius suite at five different
resolutions, as identified by a variety of different (sub-)halo finders for
simulations of cosmic structure formation. These finders span a wide range of
techniques and methodologies to extract and quantify substructures within a
larger non-homogeneous background density (e.g. a host halo). This includes
real-space, phase-space, velocity-space and time- space based finders, as well
as finders employing a Voronoi tessellation, friends-of-friends techniques, or
refined meshes as the starting point for locating substructure.A common
post-processing pipeline was used to uniformly analyse the particle lists
provided by each finder. We extract quantitative and comparable measures for
the subhaloes, primarily focusing on mass and the peak of the rotation curve
for this particular study. We find that all of the finders agree extremely well
on the presence and location of substructure and even for properties relating
to the inner part part of the subhalo (e.g. the maximum value of the rotation
curve). For properties that rely on particles near the outer edge of the
subhalo the agreement is at around the 20 per cent level. We find that basic
properties (mass, maximum circular velocity) of a subhalo can be reliably
recovered if the subhalo contains more than 100 particles although its presence
can be reliably inferred for a lower particle number limit of 20. We finally
note that the logarithmic slope of the subhalo cumulative number count is
remarkably consistent and <1 for all the finders that reached high resolution.
If correct, this would indicate that the larger and more massive, respectively,
substructures are the most dynamically interesting and that higher levels of
the (sub-)subhalo hierarchy become progressively less important.Comment: 16 pages, 7 figures, 2 tables, Accepted for MNRA
In vivo fluorescence lifetime imaging of macrophage intracellular metabolism during wound responses in zebrafish
The function of macrophages in vitro is linked to their metabolic rewiring. However, macrophage metabolism remains poorly characterized in situ. Here, we used two-photon intensity and lifetime imaging of autofluorescent metabolic coenzymes, nicotinamide adenine dinucleotide (phosphate) (NAD(P)H) and flavin adenine dinucleotide (FAD), to assess the metabolism of macrophages in the wound microenvironment. Inhibiting glycolysis reduced NAD(P)H mean lifetime and made the intracellular redox state of macrophages more oxidized, as indicated by reduced optical redox ratio. We found that TNFα+ macrophages had lower NAD(P)H mean lifetime and were more oxidized compared to TNFα− macrophages. Both infection and thermal injury induced a macrophage population with a more oxidized redox state in wounded tissues. Kinetic analysis detected temporal changes in the optical redox ratio during tissue repair, revealing a shift toward a more reduced redox state over time. Metformin reduced TNFα+ wound macrophages, made intracellular redox state more reduced and improved tissue repair. By contrast, depletion of STAT6 increased TNFα+ wound macrophages, made redox state more oxidized and impaired regeneration. Our findings suggest that autofluorescence of NAD(P)H and FAD is sensitive to dynamic changes in intracellular metabolism in tissues and can be used to probe the temporal and spatial regulation of macrophage metabolism during tissue damage and repair
Advances in Space Radiation Shielding Codes
Early space radiation shield code development relied on Monte Carlo methods and made important contributions to the space program. Monte Carlo methods have resorted to restricted one-dimensional problems leading to imperfect representation of appropriate boundary conditions. Even so, intensive computational requirements resulted and shield evaluation was made near the end of the design process. Resolving shielding issues usually had a negative impact on the design. Improved spacecraft shield design requires early entry of radiation constraints into the design process to maximize performance and minimize costs. As a result, we have been investigating high-speed computational procedures to allow shield analysis from the preliminary concept to the final design. For the last few decades, we have pursued deterministic solutions of the Boltzmann equation allowing field mapping within the International Space Station (ISS) in tens of minutes using standard Finite Element Method (FEM) geometry common to engineering design methods. A single ray trace in such geometry requires 14 milliseconds and limits application of Monte Carlo methods to such engineering models. A potential means of improving the Monte Carlo efficiency in coupling to spacecraft geometry is given
Autofluorescence lifetime imaging to monitor immune cell metabolism and function
Please click Additional Files below to see the full abstract
- …