11 research outputs found

    Phosphorus chemistry in managed forest soils-Effects of weathering and wood ash fertilisation

    Get PDF
    Weathering and Podzolisation are key mechanisms that transform primary mineral apatite into a phosphorus (P) pool with low solubility. In addition, intensive forest harvesting removes nutrients from the soil, reducing P availability. In this thesis, a combination of wet chemical extractions, bulk X-ray absorption near-edge structure (bulk-XANES) spectroscopy, microscopic X-ray fluorescence (μ-XRF) imaging, and μ-XANES was applied to seven Podzolised soils (down to 1 m depth) across Sweden, to study molecular P speciation in the bulk soil and in microsites. Moreover, this thesis examined the fate of wood ash-bound P, when added alone or with repeated nitrogen (N) fertilisation, to the organic layer to return P removed after harvest. Total P (TP) in the upper 80 cm was 69−379 g m−2, with 94% of all P residing between 20−80 cm. More than 50% of all P in B and C horizons was Al-bound P, bound mainly to imogolite-type nanoparticles (ITN), while apatite comprised about 26%. Wood ash increased TP in the organic layer by 6−28 kg P ha−1, equivalent to 17−39% of the initial ash-P content. More bioavailable P (Olsen-P) and aboveground biomass P were observed in the ash treatment than in the control, probably due to the dissolution of Ca-bound P from the ash. Wood ash application, especially at a high dose, also increased Al-bound P (

    Sequential phosphorus extraction using iron (hydr)oxide-impregnated filter paper strips

    Get PDF
    Phosphorus (P) is an important element for crop production. A low concentration limits crop growth whereas the residual quantity after fertilization contributes to eutrophication of surface waters. A key to success in the soil P management is its accurate estimation and potential supply to the plant. The objective of this project was to compare the soil P extractability between the Pi- filter strip method and P depletion without a sink (0.01 M CaCl2). The results were compared to those obtained using ammonium lactate (AL), Olsen (OL) soil P tests. The results showed that the efficiency of different methods decreased in the order Pi (62-85%) > OL (25-40%) > 0.01 M CaCl2 (8-24%) of the total P extracted by AL. A strong correlation (r = 0.99) was obtained between the pairs (Pi; AL), (Pi; OL), and (OL; AL). Further, it was found that all methods were equally well correlated (the r was between 0.88 and 0.90) with the depletion method. The soil with the highest P adsorption capacity had higher values of P extracted by the AL, Pi and OL methods but was lower in 0.01 M CaCl2 extractable P. The results indicated that in the soils studied, the efficiency of the Pi-filter strip method in comparison to the routine P tests (AL and OL) was not attributed to the soil properties. It was rather attributed to the length of soil P desorption time and the number of filter strips

    Phosphorus desorption and isotope exchange kinetics in agricultural soils

    Get PDF
    To improve phosphorus (P) fertilization and environmental assessments, a better understanding of release kinetics of solid-phase P to soil solution is needed. In this study, Fe (hydr)oxide-coated filter papers (Fh papers), isotopic exchange kinetics (IEK) and chemical extractions were used to assess the sizes of fast and slowly desorbing P pools in the soils of six long-term Swedish field experiments. The P desorption data from the Fh-paper extraction of soil (20 days of continual P removal) were fitted with the Lookman two-compartment desorption model, which estimates the pools of fast (Q(1)) and slowly (Q(2)) desorbing P, and their desorption rates k(1) and k(2). The amounts of isotope-exchangeable P (E) were calculated (E-1min to E->3 months) and compared with Q(1) and Q(2). The strongest relationship was found between E-1 min and Q(1) (r(2) = .87, p < .01). There was also an inverse relationship between the IEK parameter n (the rate of exchange) and k(1) (r(2) = .52, p < .01) and k(2) (r(2) = .52, p < .01), suggesting that a soil with a high value of n desorbs less P per time unit. The relationships between these results show that they deliver similar information, but both methods are hard to implement in routine analysis. However, Olsen-extractable P was similar in magnitude to Q(1) (P-Olsen = 1.1 x Q(1) + 2.3, r(2) = .96), n and k(1) were related to P-Olsen/P-CaCl2, while k(2) was related to P-oxalate/P-Olsen. Therefore, these extractions can be used to estimate the sizes and desorption rates of the different P pools, which could be important for assessments of plant availability and leaching

    Phosphorus speciation in the organic layer of two Swedish forest soils 13-24 years after wood ash and nitrogen application

    Get PDF
    Application of wood ash to forests can restore pools of phosphorus (P) and other nutrients, which are removed following whole tree harvesting. Yet, the mechanisms that affect the fate of ash-P in the organic layer are less well known. Previous research into the extent to which ash application leads to increased P solubility in the soil is contradictory. We combined synchrotron P K-edge XANES spectroscopy, mu-XRF microscopy, and chemical ex-tractions to examine the speciation and solubility of P. We studied organic horizons of two long-term field ex-periments, Riddarhyttan (central Sweden), which had received 3, 6, and 9 Mg ash ha -1, and Ro center dot dalund (northern Sweden), where 3 Mg ash ha- 1 had been applied alone or combined with N every-three years since 2003. At the latter site, we also determined P in aboveground tree biomass. Overall, the ash application increased P in the organic layer by between 6 and 28 kg P ha -1, equivalent to 17-39 % of the initial P content in the applied ash. At Ro center dot dalund, there was 4.6 kg Ca-bound P ha- 1 (9.5 %) in the ash treatment compared to 1.6 kg ha- 1 in the ash + N treatment and < 0.4 kg ha- 1 in the N treatment and the control. At Riddarhyttan, only the treatment with the highest ash dose had residual Ca-bound P (3.8 kg ha -1). In contrast, the ash application increased Al-bound P (p < 0.001) with up to 15.6 kg P ha -1. Moreover, the ash increased Olsen-P by up to two times. There was a strong relationship between the concentrations of Olsen-P and Al-bound P (R2 = 0.83, p < 0.001) as well as Fe-bound P (R2 = 0.74, p = 0.003), suggesting that the ash application resulted in an increased amount of relatively soluble P associated with hydroxy-Al and hydroxy-Fe compounds. Further, there was an 18 % increase in P uptake by trees in the ash treatment. By contrast, repeated N fertilization, with or without ash, reduced Olsen-P. The lower P extractability was concomitant with a 39 % increase in plant P uptake in the N treatment, which indicates elevated P uptake in response to higher N availability. Hence, the application of wood ash increased Al-bound P, easily available P, and P uptake. N fertilization, while also increasing tree P uptake, instead decreased easily available P and did not cause a shift in soil P speciation

    Phosphorus speciation in the organic layer of two Swedish forest soils 13–24 years after wood ash and nitrogen application

    Get PDF
    Application of wood ash to forests can restore pools of phosphorus (P) and other nutrients, which are removed following whole tree harvesting. Yet, the mechanisms that affect the fate of ash-P in the organic layer are less well known. Previous research into the extent to which ash application leads to increased P solubility in the soil is contradictory. We combined synchrotron P K-edge XANES spectroscopy, µ-XRF microscopy, and chemical extractions to examine the speciation and solubility of P. We studied organic horizons of two long-term field experiments, Riddarhyttan (central Sweden), which had received 3, 6, and 9 Mg ash ha−1, and Rödålund (northern Sweden), where 3 Mg ash ha−1 had been applied alone or combined with N every-three years since 2003. At the latter site, we also determined P in aboveground tree biomass. Overall, the ash application increased P in the organic layer by between 6 and 28 kg P ha−1, equivalent to 17–39 % of the initial P content in the applied ash. At Rödålund, there was 4.6 kg Ca-bound P ha−1 (9.5 %) in the ash treatment compared to 1.6 kg ha−1 in the ash + N treatment and < 0.4 kg ha−1 in the N treatment and the control. At Riddarhyttan, only the treatment with the highest ash dose had residual Ca-bound P (3.8 kg ha−1). In contrast, the ash application increased Al-bound P (p < 0.001) with up to 15.6 kg P ha−1. Moreover, the ash increased Olsen-P by up to two times. There was a strong relationship between the concentrations of Olsen-P and Al-bound P (R2 = 0.83, p < 0.001) as well as Fe-bound P (R2 = 0.74, p = 0.003), suggesting that the ash application resulted in an increased amount of relatively soluble P associated with hydroxy-Al and hydroxy-Fe compounds. Further, there was an 18 % increase in P uptake by trees in the ash treatment. By contrast, repeated N fertilization, with or without ash, reduced Olsen-P. The lower P extractability was concomitant with a 39 % increase in plant P uptake in the N treatment, which indicates elevated P uptake in response to higher N availability. Hence, the application of wood ash increased Al-bound P, easily available P, and P uptake. N fertilization, while also increasing tree P uptake, instead decreased easily available P and did not cause a shift in soil P speciation

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Phosphorus in 2D: Spatially resolved P speciation in two Swedish forest soils as influenced by apatite weathering and podzolization

    Get PDF
    The cycling and long-term supply of phosphorus (P) in soils are of global environmental and agricultural concern. To advance the knowledge, a detailed understanding of both the vertical and lateral variation of P chemical speciation and retention mechanism(s) is required, a knowledge that is limited in postglacial forest soils. We combined the use of synchrotron X-ray fluorescence microscopy with multi-elemental co-localisation analysis and P K-edge XANES spectroscopy to reveal critical chemical and structural soil properties. We established a two-dimensional (2D) imagery of P retention and speciation at a microscale spatial resolution in two forest soil profiles formed in glaciofluvial and wave-washed sand. The abundance and speciation of P in the upper 40 cm was found to be influenced by soil weathering and podzolization, leading to spatial variability in P speciation on the microscale (&lt; 200 pm) with P existing predominantly as organic P and as PO4 adsorbed to allophane and ferrihydrite, according to XANES spectroscopy. These species were mostly retained at sharp edges and in pore spaces within Al and Si-bearing particles. Despite the relatively young age ( &lt; 15,000 years) of the soils, our results show primary mineral apatite to have weathered from the surface horizons. In the C horizon however, a large fraction of the P was in the form of apatite, which appeared as widely dispersed ( > 600 pm) hot spots of inclusions in aluminosilicates or as discrete micro-sized apatite grains. The subsoil apatite represents a pool of P that trees can potentially acquire and thus add to the biogeochemically active P pool in temperate forest soils

    Phosphorus abundance and speciation in acid forest Podzols - Effect of postglacial weathering

    Get PDF
    The molecular speciation of phosphorus (P) in forest soils is of strategic importance for sustainable forest management. However, only limited information exists about soil P speciation in boreal forests. We combined P K-edge XANES spectroscopy, wet chemical P extractions, and X-ray diffraction analysis of soil minerals to investigate the vertical distribution of P species in seven podzolised forest soils differing in soil properties and climatic conditions. The results showed that the total P stock was on average, 4.0 g m(-2) in the Oe horizon, 9.5 g m(-2) in the A and E horizons, and substantially higher (117.5 g m(-2), and 109.3 g m(-2)) in the B and C horizons down to 80 cm depth, respectively. Although the Oe horizons contain a minor total P stock, 87% of it was stored as organic P. The composition of P species in the P-depleted A/E horizons was highly variable depending on the site. However, of the P stored in B and C horizons down to 80 cm, 58% was adsorbed P, mostly to Al, while apatite accounted for 25% of P, most of which was found in the C horizons. The apatite stocks in the A/E, B, and C horizons (down to 80 cm) accounted for 2.5%, 20%, and 77.2%, respectively, of the total apatite for all the mineral soils studied. These figures can be explained, first, by the dissolution of primary mineral apatite caused mainly by acidification. Second, P uptake by plants and microorganisms, and the associated formation of the Oe horizons, led to the formation of soil organic P. Further, the formation of organo-metal complexes and podzolization led to the translocation of P to the B horizons, where P accumulated mostly as P adsorbed to imogolite-type materials (e.g. allophane) and ferrihydrite, as shown by P K-edge XANES spectroscopy. In conclusion, this study shows that despite the young age of these soils (<15,000 years), most of the primary mineral apatite in the upper 30 cm has been transformed into organic P, and Fe-, Al-bound PO 4 . Moreover, the subsoil P, mainly consisting of adsorbed P to Al, and apatite, dominates the P inventory and probably serves as a long-term buffer of P

    Phosphorus desorption and isotope exchange kinetics in agricultural soils

    No full text
    To improve phosphorus (P) fertilization and environmental assessments, a better understanding of release kinetics of solid‐phase P to soil solution is needed. In this study, Fe (hydr)oxide‐coated filter papers (Fh papers), isotopic exchange kinetics (IEK) and chemical extractions were used to assess the sizes of fast and slowly desorbing P pools in the soils of six long‐term Swedish field experiments. The P desorption data from the Fh‐paper extraction of soil (20 days of continual P removal) were fitted with the Lookman two‐compartment desorption model, which estimates the pools of fast (Q1) and slowly (Q2) desorbing P, and their desorption rates k1 and k2. The amounts of isotope‐exchangeable P (E) were calculated (E1min to E>3 months) and compared with Q1 and Q2. The strongest relationship was found between E1 min and Q1 (r2 = .87, p < .01). There was also an inverse relationship between the IEK parameter n (the rate of exchange) and k1 (r2 = .52, p < .01) and k2 (r2 = .52, p < .01), suggesting that a soil with a high value of n desorbs less P per time unit. The relationships between these results show that they deliver similar information, but both methods are hard to implement in routine analysis. However, Olsen‐extractable P was similar in magnitude to Q1 (P‐Olsen = 1.1 × Q1 + 2.3, r2 = .96), n and k1 were related to P‐Olsen/P‐CaCl2, while k2 was related to P‐oxalate/P‐Olsen. Therefore, these extractions can be used to estimate the sizes and desorption rates of the different P pools, which could be important for assessments of plant availability and leaching.ISSN:0266-0032ISSN:1475-274

    A Probabilistic Approach to Phosphorus Speciation of Soils Using P K-edge XANES Spectroscopy with Linear Combination Fitting

    No full text
    A common technique to quantitatively estimate P speciation in soil samples is to apply linear combination fitting (LCF) to normalized P K-edge X-ray absorption near-edge structure (XANES) spectra. Despite the rapid growth of such applications, the uncertainties of the fitted weights are still poorly known. Further, there are few reports to what extent the LCF standards represent unique end-members. Here, the co-variance between 34 standards was determined and their significance for LCF was discussed. We present a probabilistic approach for refining the calculation of LCF weights based on Latin hypercube sampling of normalized XANES spectra, where the contributions of energy calibration and normalization to fit uncertainty were considered. Many of the LCF standards, particularly within the same standard groups, were strongly correlated. This supports an approach in which the LCF standards are grouped. Moreover, adsorbed phytates and monetite were well described by other standards, which puts into question their use as end-members in LCF. Use of the probabilistic method resulted in uncertainties ranging from 2 to 11 percentage units. Uncertainties in the calibrated energy were important for the LCF weights, particularly for organic P, which changed with up to 2.7 percentage units per 0.01 eV error in energy. These results highlight the necessity of careful energy calibration and the use of frequent calibration checks. The probabilistic approach, in which at least 100 spectral variants are analyzed, improves our ability to identify the most likely P compounds present in a soil sample, and a procedure for this is suggested in the paper
    corecore