427 research outputs found

    Unveiling the near-infrared structure of the massive-young stellar object NGC 3603 IRS 9A with sparse aperture masking and spectroastrometry

    Full text link
    Contemporary theory holds that massive stars gather mass during their initial phases via accreting disk-like structures. However, conclusive evidence for disks has remained elusive for the most massive young objects. This is mainly due to significant observational challenges. Incisive studies, even targeting individual objects, are therefore relevant to the progression of the field. NGC 3603 IRS 9A* is a young massive stellar object still surrounded by an envelope of molecular gas. Previous mid-infrared observations with long-baseline interferometry provided evidence for a disk of 50 mas diameter at its core. This work aims at a comprehensive study of the physics and morphology of IRS 9A at near-infrared wavelengths. New sparse aperture masking interferometry data taken with NACO/VLT at Ks and Lp filters were obtained and analysed together with archival CRIRES spectra of the H2 and BrG lines. The calibrated visibilities recorded at Ks and Lp bands suggest the presence of a partially resolved compact object of 30 mas at the core of IRS 9A, together with the presence of over-resolved flux. The spectroastrometric signal of the H2 line shows that this spectral feature proceeds from the large scale extended emission (300 mas) of IRS 9A, while the BrG line appears to be formed at the core of the object (20 mas). This scenario is consistent with the brightness distribution of the source for near- and mid-infrared wavelengths at various spatial scales. However, our model suffers from remaining inconsistencies between SED modelling and the interferometric data. Moreover, the BrG spectroastrometric signal indicates that the core of IRS 9A exhibits some form of complexity such as asymmetries in the disk. Future high-resolution observations are required to confirm the disk/envelope model and to flesh out the details of the physical form of the inner regions of IRS 9A.Comment: Accepted to be published in Astronomy & Astrophysics, 13 pages, 14 figure

    A close halo of large transparent grains around extreme red giant stars

    Full text link
    Intermediate-mass stars end their lives by ejecting the bulk of their envelope via a slow dense wind back into the interstellar medium, to form the next generation of stars and planets. Stellar pulsations are thought to elevate gas to an altitude cool enough for the condensation of dust, which is then accelerated by radiation pressure from starlight, entraining the gas and driving the wind. However accounting for the mass loss has been a problem due to the difficulty in observing tenuous gas and dust tens of milliarcseconds from the star, and there is accordingly no consensus on the way sufficient momentum is transferred from the starlight to the outflow. Here, we present spatially-resolved, multi-wavelength observations of circumstellar dust shells of three stars on the asymptotic giant branch of the HR diagram. When imaged in scattered light, dust shells were found at remarkably small radii (<~ 2 stellar radii) and with unexpectedly large grains (~300 nm radius). This proximity to the photosphere argues for dust species that are transparent to starlight and therefore resistant to sublimation by the intense radiation field. While transparency usually implies insufficient radiative pressure to drive a wind, the radiation field can accelerate these large grains via photon scattering rather than absorption - a plausible mass-loss mechanism for lower-amplitude pulsating stars.Comment: 13 pages, 1 table, 6 figure

    The radius and mass of the subgiant star bet Hyi from interferometry and asteroseismology

    Get PDF
    We have used the Sydney University Stellar Interferometer (SUSI) to measure the angular diameter of beta Hydri. This star is a nearby G2 subgiant whose mean density was recently measured with high precision using asteroseismology. We determine the radius and effective temperature of the star to be 1.814+/-0.017 R_sun (0.9%) and 5872+/-44 K (0.7%) respectively. By combining this value with the mean density, as estimated from asteroseismology, we make a direct estimate of the stellar mass. We find a value of 1.07+/-0.03 M_sun (2.8%), which agrees with published estimates based on fitting in the H-R diagram, but has much higher precision. These results place valuable constraints on theoretical models of beta Hyi and its oscillation frequencies.Comment: 3 figures, 3 tables, to appear in MNRAS Letter

    Modeling Forbidden Line Emission Profiles from Colliding Wind Binaries

    Full text link
    This paper presents calculations for forbidden emission line profile shapes arising from colliding wind binaries. The main application is for systems involving a Wolf-Rayet (WR) star and an OB star companion. The WR wind is assumed to dominate the forbidden line emission. The colliding wind interaction is treated as an archimedean spiral with an inner boundary. Under the assumptions of the model, the major findings are as follows. (a) The redistribution of the WR wind as a result of the wind collision is not flux conservative but typically produces an excess of line emission; however, this excess is modest at around the 10% level. (b) Deviations from a flat-top profile shape for a spherical wind are greatest for viewing inclinations that are more nearly face-on to the orbital plane. At intermediate viewing inclinations, profiles display only mild deviations from a flat-top shape. (c) The profile shape can be used to constrain the colliding wind bow shock opening angle. (d) Structure in the line profile tends to be suppressed in binaries of shorter periods. (e) Obtaining data for multiple forbidden lines is important since different lines probe different characteristic radial scales. Our models are discussed in relation to ISO data for WR 147 and gamma Vel (WR11). The lines for WR 147 are probably not accurate enough to draw firm conclusions. For gamma Vel, individual line morphologies are broadly reproducible but not simultaneously so for the claimed wind and orbital parameters. Overall, the effort demonstrates how lines that are sensitive to the large-scale wind can help to deduce binary system properties and provide new tests of numerical simulations.Comment: to appear in MNRA

    The last gasps of VY CMa: Aperture synthesis and adaptive optics imagery

    Full text link
    We present new observations of the red supergiant VY CMa at 1.25 micron, 1.65 micron, 2.26 micron, 3.08 micron and 4.8 micron. Two complementary observational techniques were utilized: non-redundant aperture masking on the 10-m Keck-I telescope yielding images of the innermost regions at unprecedented resolution, and adaptive optics imaging on the ESO 3.6-m telescope at La Silla attaining extremely high (~10^5) peak-to-noise dynamic range over a wide field. For the first time the inner dust shell has been resolved in the near-infrared to reveal a one-sided extension of circumstellar emission within 0.1" (~15 R_star) of the star. The line-of-sight optical depths of the circumstellar dust shell at 1.65 micron, 2.26 micron, and 3.08 micron have been estimated to be 1.86 +/- 0.42, 0.85 +/- 0.20, and 0.44 +/- 0.11. These new results allow the bolometric luminosity of VY~CMa to be estimated independent of the dust shell geometry, yielding L_star ~ 2x10^5 L_sun. A variety of dust condensations, including a large scattering plume and a bow-shaped dust feature, were observed in the faint, extended nebula up to 4" from the central source. While the origin of the nebulous plume remains uncertain, a geometrical model is developed assuming the plume is produced by radially-driven dust grains forming at a rotating flow insertion point with a rotational period between 1200-4200 years, which is perhaps the stellar rotational period or the orbital period of an unseen companion.Comment: 25 pages total with 1 table and 5 figures. Accepted by Astrophysical Journal (to appear in February 1999

    A dusty torus around the luminous young star LkHa 101

    Get PDF
    A star forms when a cloud of dust and gas collapses. It is generally believed that this collapse first produces a flattened rotating disk, through which matter is fed onto the embryonic star at the center of the disk. When the temperature and density at the center of the star pass a critical threshold, thermonuclear fusion begins. The remaining disk, which can still contain up to 0.3 times the mass of the star, is then sculpted and eventually dissipated by the radiation and wind from the newborn star. Unfortunately this picture of the structure and evolution of the disk remains speculative because of the lack of morphological data of sufficient resolution and uncertainties regarding the underlying physical processes. Here we present resolved images of a young star, LkHa 101 in which the structure of the inner accretion disk is resolved. We find that the disk is almost face-on, with a central gap (or cavity) and a hot inner edge. The cavity is bigger than previous theoretical predictions, and we infer that the position of the inner edge is probably determined by sublimation of dust grains by direct stellar radiation, rather than by disk reprocessing or the viscous heating processes as usually assumed.Comment: 7 pages, 1 figure. Appears in Nature, 22 Feb, 2001 (Vol 409

    Mid-infrared interferometry of the massive young stellar object NGC3603 - IRS 9A

    Full text link
    We present observations and models for one of these MYSO candidates, NGC3603 IRS 9A. Our goal is to investigate with infrared interferometry the structure of IRS 9A on scales as small as 200AU, exploiting the fact that a cluster of O and B stars has blown away much of the obscuring foreground dust and gas. Observations in the N-band were carried out with the MIDI beam combiner attached to the VLTI. Additional interferometric observations which probe the structure of IRS 9A on larger scales were performed with an aperture mask installed in the T-ReCS instrument of Gemini South. The spectral energy distribution (SED) is constrained by the MIDI N-band spectrum and by data from the Spitzer Space Telescope. Our efforts to model the structure and SED of IRS 9A range from simple geometrical models of the brightness distribution to one- and two-dimensional radiative transfer computations. The target is resolved by T-ReCS, with an equivalent (elliptical) Gaussian width of 330mas by 280mas (2300 AU by 2000 AU). Despite this fact, a warm compact unresolved component was detected by MIDI which is possibly associated with the inner regions of a flattened dust distribution. Based on our interferometric data, no sign of multiplicity was found on scales between about 200AU and 700AU projected separation. A geometric model consisting of a warm (1000 K) ring (400 AU diameter) and a cool (140 K) large envelope provides a good fit to the data. No single model fitting all visibility and photometric data could be found, with disk models performing better than spherical models. While the data are clearly inconsistent with a spherical dust distribution they are insufficient to prove the existence of a disk but rather hint at a more complex dust distribution.Comment: 8 pages, 11 figures. Accepted for publication in A&

    3D simulations of RS Oph: from accretion to nova blast

    Full text link
    RS Ophiuchi is a recurrent nova with a period of about 22 years, consisting of a wind accreting binary system with a white dwarf (WD) very close to the Chandrasekhar limit and a red giant star (RG). The system is considered a prime candidate to evolve into an SNIa. We present a 3D hydrodynamic simulation of the quiescent accretion and the subsequent explosive phase. The computed circumstellar mass distribution in the quiescent phase is highly structured with a mass enhancement in the orbital plane of about a factor of 2 as compared to the poleward directions. The simulated nova remnant evolves aspherically, propagating faster toward the poles. The shock velocities derived from the simulations are in agreement with those derived from observations. For v_RG = 20 km/s and for nearly isothermal flows, we derive a mass transfer rate to the WD of 10% of the mass loss of the RG. For an RG mass loss of 10^{-7} solar masses per year, we found the orbit of the system to decay by 3% per million years. With the derived mass transfer rate, multi-cycle nova models provide a qualitatively correct recurrence time, amplitude, and fastness of the nova. Our simulations provide, along with the observations and nova models, the third ingredient for a deeper understanding of the recurrent novae of the RS Oph type. In combination with recent multi-cycle nova models, our results suggests that the WD in RS Oph will increase in mass. Several speculative outcomes then seem plausible. The WD may reach the Chandrasekhar limit and explode as an SN Ia. Alternatively, the mass loss of the RG could result in a smaller Roche volume, a common envelope phase, and a narrow WD+WD system. Angular momentum loss due to graviational wave emission could trigger the merger of the two WDs and - perhaps - an SN Ia via the double degenerate scenario.Comment: Accepted by Astronomy & Astrophysics Letters, 4 pages, 5 figures; Version with high resolution figures and movie can be found at http://www.astro.phys.ethz.ch/staff/folini/private/research/rsoph/rsoph.htm

    Probing the close environment of young stellar objects with interferometry

    Full text link
    The study of Young Stellar Objects (YSOs) is one of the most exciting topics that can be undertaken by long baseline optical interferometry. The magnitudes of these objects are at the edge of capabilities of current optical interferometers, limiting the studies to a few dozen, but are well within the capability of coming large aperture interferometers like the VLT Interferometer, the Keck Interferometer, the Large Binocular Telescope or 'OHANA. The milli-arcsecond spatial resolution reached by interferometry probes the very close environment of young stars, down to a tenth of an astronomical unit. In this paper, I review the different aspects of star formation that can be tackled by interferometry: circumstellar disks, multiplicity, jets. I present recent observations performed with operational infrared interferometers, IOTA, PTI and ISI, and I show why in the next future one will extend these studies with large aperture interferometers.Comment: Review to be published in JENAM'2002 proceedings "The Very Large Telescope Interferometer Challenges for the future
    corecore