16 research outputs found

    The Science Performance of JWST as Characterized in Commissioning

    Get PDF
    This paper characterizes the actual science performance of the James Webb Space Telescope (JWST), as determined from the six month commissioning period. We summarize the performance of the spacecraft, telescope, science instruments, and ground system, with an emphasis on differences from pre-launch expectations. Commissioning has made clear that JWST is fully capable of achieving the discoveries for which it was built. Moreover, almost across the board, the science performance of JWST is better than expected; in most cases, JWST will go deeper faster than expected. The telescope and instrument suite have demonstrated the sensitivity, stability, image quality, and spectral range that are necessary to transform our understanding of the cosmos through observations spanning from near-earth asteroids to the most distant galaxies

    The Mid-infrared Instrument for JWST and Its In-flight Performance

    Get PDF
    The Mid-Infrared Instrument (MIRI) extends the reach of the James Webb Space Telescope (JWST) to 28.5 μm. It provides subarcsecond-resolution imaging, high sensitivity coronagraphy, and spectroscopy at resolutions of λ/Δλ ∼ 100-3500, with the high-resolution mode employing an integral field unit to provide spatial data cubes. The resulting broad suite of capabilities will enable huge advances in studies over this wavelength range. This overview describes the history of acquiring this capability for JWST. It discusses the basic attributes of the instrument optics, the detector arrays, and the cryocooler that keeps everything at approximately 7 K. It gives a short description of the data pipeline and of the instrument performance demonstrated during JWST commissioning. The bottom line is that the telescope and MIRI are both operating to the standards set by pre-launch predictions, and all of the MIRI capabilities are operating at, or even a bit better than, the level that had been expected. The paper is also designed to act as a roadmap to more detailed papers on different aspects of MIRI

    The James Webb Space Telescope Mission

    Full text link
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4m4m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5m6.5m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 years, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space Telescope Overview, 29 pages, 4 figure

    Disorder-Induced Structural Complexity in the Barlowite Family of S = 1/2 Kagomé Magnets

    Get PDF
    We present a comprehensive structural and magnetic characterization of the barlowite family of S = 1/2 kagomé magnets, Cu4(OH)6FX, where X = Cl, Br, or I. Through high-resolution synchrotron X-ray and neutron powder diffraction measurements, we reveal two sources of structural complexity within this family of materials, namely, compositional disorder of the halide species that occupy sites in between the kagomé layers and the positional disorder of the interlayer Cu2+ ions that persists well into the Pnma structural ground state. We demonstrate that understanding these inherent structural disorders is key as they correlate with the degree of partial order in the magnetic ground states of these quantum frustrated magnets

    First observations from the SPICE EUV spectrometer on Solar Orbiter

    No full text
    Aims. We present first science observations taken during the commissioning activities of the Spectral Imaging of the Coronal Environment (SPICE) instrument on the ESA/NASA Solar Orbiter mission. SPICE is a high-resolution imaging spectrometer operating at extreme ultraviolet (EUV) wavelengths. In this paper we illustrate the possible types of observations to give prospective users a better understanding of the science capabilities of SPICE. Methods. We have reviewed the data obtained by SPICE between April and June 2020 and selected representative results obtained with different slits and a range of exposure times between 5 s and 180 s. Standard instrumental corrections have been applied to the raw data. Results. The paper discusses the first observations of the Sun on different targets and presents an example of the full spectra from the quiet Sun, identifying over 40 spectral lines from neutral hydrogen and ions of carbon, oxygen, nitrogen, neon, sulphur, magnesium, and iron. These lines cover the temperature range between 20 000 K and 1 million K (10 MK in flares), providing slices of the Sun’s atmosphere in narrow temperature intervals. We provide a list of count rates for the 23 brightest spectral lines. We show examples of raster images of the quiet Sun in several strong transition region lines, where we have found unusually bright, compact structures in the quiet Sun network, with extreme intensities up to 25 times greater than the average intensity across the image. The lifetimes of these structures can exceed 2.5 hours. We identify them as a transition region signature of coronal bright points and compare their areas and intensity enhancements. We also show the first above-limb measurements with SPICE above the polar limb in C III, O VI, and Ne VIII lines, and far off limb measurements in the equatorial plane in Mg IX, Ne VIII, and O VI lines. We discuss the potential to use abundance diagnostics methods to study the variability of the elemental composition that can be compared with in situ measurements to help confirm the magnetic connection between the spacecraft location and the Sun’s surface, and locate the sources of the solar wind. Conclusions. The SPICE instrument successfully performs measurements of EUV spectra and raster images that will make vital contributions to the scientific success of the Solar Orbiter mission

    The Solar Orbiter SPICE instrument -- An extreme UV imaging spectrometer

    No full text
    A&A, accepted 19 August 2019; 26 pages, 25 figuresThe Spectral Imaging of the Coronal Environment (SPICE) instrument is a high-resolution imaging spectrometer operating at extreme ultraviolet (EUV) wavelengths. In this paper, we present the concept, design, and pre-launch performance of this facility instrument on the ESA/NASA Solar Orbiter mission. The goal of this paper is to give prospective users a better understanding of the possible types of observations, the data acquisition, and the sources that contribute to the instrument's signal. The paper discusses the science objectives, with a focus on the SPICE-specific aspects, before presenting the instrument's design, including optical, mechanical, thermal, and electronics aspects. This is followed by a characterisation and calibration of the instrument's performance. The paper concludes with descriptions of the operations concept and data processing. The performance measurements of the various instrument parameters meet the requirements derived from the mission's science objectives. The SPICE instrument is ready to perform measurements that will provide vital contributions to the scientific success of the Solar Orbiter mission
    corecore