13 research outputs found

    Geochemical constraints on komatiite volcanism from Sargur Group Nagamangala greenstone belt, western Dharwar craton, southern India: implications for Mesoarchean mantle evolution and continental growth

    Get PDF
    We present field, petrographic, major and trace element data for komatiites and komatiite basalts from Sargur Group Nagamangala greenstone belt, western Dharwar craton. Field evidences such as crude pillow structure indicate their eruption in a marine environment whilst spinifex texture reveals their komatiite nature. Petrographic data suggest that the primary mineralogy has been completely altered during post-magmatic processes associated with metamorphism corresponding to greenschist to lower amphibolite facies conditions. The studied komatiites contain serpentine, talc, tremolite, actinolite and chlorite whilst tremolite, actinolite with minor plagioclase in komatiitic basalts. Based on the published Sm-Nd whole rock isochron ages of adjoining Banasandra komatiites (northern extension of Nagamangala belt) and further northwest in Nuggihalli belt and Kalyadi belt we speculate ca. 3.2–3.15 Ga for komatiite eruption in Nagamangala belt. Trace element characteristics particularly HFSE and REE patterns suggest that most of the primary geochemical characteristics are preserved with minor influence of post-magmatic alteration and/or contamination. About 1/3 of studied komatiites show Al-depletion whilst remaining komatiites and komatiite basalts are Al-undepleted. Several samples despite high MgO, (Gd/Yb)N ratios show low CaO/Al2O3 ratios. Such anomalous values could be related to removal of CaO from komatiites during fluid-driven hydrothermal alteration, thus lowering CaO/Al2O3 ratios. The elemental characteristics of Al-depleted komatiites such as higher (Gd/Yb)N (>1.0), CaO/Al2O3 (>1.0), Al2O3/TiO2 (<18) together with lower HREE, Y, Zr and Hf indicate their derivation from deeper upper mantle with minor garnet (majorite?) involvement in residue whereas lower (Gd/Yb)N (<1.0), CaO/Al2O3 (<0.9), higher Al2O3/TiO2 (>18) together with higher HREE, Y, Zr suggest their derivation from shallower upper mantle without garnet involvement in residue. The observed chemical characteristics (CaO/Al2O3, Al2O3/TiO2, MgO, Ni, Cr, Nb, Zr, Y, Hf, and REE) indicate derivation of the komatiite and komatiite basalt magmas from heterogeneous mantle (depleted to primitive mantle) at different depths in hot spot environments possibly with a rising plume. The low content of incompatible elements in studied komatiites suggest existence of depleted mantle during ca. 3.2 Ga which in turn imply an earlier episode of mantle differentiation, greenstone volcanism and continental growth probably during ca. 3.6–3.3 Ga which is substantiated by Nd and Pb isotope data of gneisses and komatiites in western Dharwar craton (WDC)

    Physical volcanology and geochemistry of Palaeoarchaean komatiite lava flows from the western Dharwar craton, southern India: implications for Archaean mantle evolution and crustal growth

    Get PDF
    Palaeoarchaean (3.38–3.35 Ga) komatiites from the Jayachamaraja Pura (J.C. Pura) and Banasandra greenstone belts of the western Dharwar craton, southern India were erupted as submarine lava flows. These high-temperature (1450–1550°C), low-viscosity lavas produced thick, massive, polygonal jointed sheet flows with sporadic flow top breccias. Thick olivine cumulate zones within differentiated komatiites suggest channel/conduit facies. Compound, undifferentiated flow fields developed marginal-lobate thin flows with several spinifex-textured lobes. Individual lobes experienced two distinct vesiculation episodes and grew by inflation. Occasionally komatiite flows form pillows and quench fragmented hyaloclastites. J.C. Pura komatiite lavas represent massive coherent facies with minor channel facies, whilst the Bansandra komatiites correspond to compound flow fields interspersed with pillow facies. The komatiites are metamorphosed to greenschist facies and consist of serpentine-talc ± carbonate, actinolite–tremolite with remnants of primary olivine, chromite, and pyroxene. The majority of the studied samples are komatiites (22.46–42.41 wt.% MgO) whilst a few are komatiitic basalts (12.94–16.18 wt.% MgO) extending into basaltic (7.71 – 10.80 wt.% MgO) composition. The studied komatiites are Al-depleted Barberton type whilst komatiite basalts belong to the Al-undepleted Munro type. Trace element data suggest variable fractionation of garnet, olivine, pyroxene, and chromite. Incompatible element ratios (Nb/Th, Nb/U, Zr/Y Nb/Y) show that the komatiites were derived from heterogeneous sources ranging from depleted to primitive mantle. CaO/Al2O3 and (Gd/Yb)N ratios show that the Al-depleted komatiite magmas were generated at great depth (350–400 km) by 40–50% partial melting of deep mantle with or without garnet (majorite?) in residue whilst komatiite basalts and basalts were generated at shallow depth in an ascending plume. The widespread Palaeoarchaean deep depleted mantle-derived komatiite volcanism and sub-contemporaneous TTG accretion implies a major earlier episode of mantle differentiation and crustal growth during ca. 3.6–3.8 Ga

    Geochemical constraints on komatiite volcanism from Sargur Group Nagamangala greenstone belt, western Dharwar craton, southern India: Implications for Mesoarchean mantle evolution and continental growth

    Get PDF
    We present field, petrographic, major and trace element data for komatiites and komatiite basalts from Sargur Group Nagamangala greenstone belt, western Dharwar craton. Field evidences such as crude pillow structure indicate their eruption in a marine environment whilst spinifex texture reveals their komatiite nature. Petrographic data suggest that the primary mineralogy has been completely altered during post-magmatic processes associated with metamorphism corresponding to greenschist to lower amphibolite facies conditions. The studied komatiites contain serpentine, talc, tremolite, actinolite and chlorite whilst tremolite, actinolite with minor plagioclase in komatiitic basalts. Based on the published Sm-Nd whole rock isochron ages of adjoining Banasandra komatiites (northern extension of Nagamangala belt) and further northwest in Nuggihalli belt and Kalyadi belt we speculate ca. 3.2–3.15 Ga for komatiite eruption in Nagamangala belt. Trace element characteristics particularly HFSE and REE patterns suggest that most of the primary geochemical characteristics are preserved with minor influence of post-magmatic alteration and/or contamination. About 1/3 of studied komatiites show Al-depletion whilst remaining komatiites and komatiite basalts are Al-undepleted. Several samples despite high MgO, (Gd/Yb)N ratios show low CaO/Al2O3 ratios. Such anomalous values could be related to removal of CaO from komatiites during fluid-driven hydrothermal alteration, thus lowering CaO/Al2O3 ratios. The elemental characteristics of Al-depleted komatiites such as higher (Gd/Yb)N (>1.0), CaO/Al2O3 (>1.0), Al2O3/TiO2 (18) together with higher HREE, Y, Zr suggest their derivation from shallower upper mantle without garnet involvement in residue. The observed chemical characteristics (CaO/Al2O3, Al2O3/TiO2, MgO, Ni, Cr, Nb, Zr, Y, Hf, and REE) indicate derivation of the komatiite and komatiite basalt magmas from heterogeneous mantle (depleted to primitive mantle) at different depths in hot spot environments possibly with a rising plume. The low content of incompatible elements in studied komatiites suggest existence of depleted mantle during ca. 3.2 Ga which in turn imply an earlier episode of mantle differentiation, greenstone volcanism and continental growth probably during ca. 3.6–3.3 Ga which is substantiated by Nd and Pb isotope data of gneisses and komatiites in western Dharwar craton (WDC)

    Paleo- to Mesoarchean TTG accretion and continental growth in the western Dharwar craton, Southern India : constraints from SHRIMP U-Pb zircon geochronology, whole-rock geochemistry and Nd-Sr isotopes

    No full text
    A multidisciplinary study involving field, petrographic, SHRIMP U-Pb zircon/titanite ages, whole rock geochemical and Nd-Sr isotope data is presented for the Peninsular Gneisses and associated plutons forming core of the Dharwar craton. Two major periods (3350-3280 Ma and 3230-3200 Ma) of crustal growth through TTG accretion sub-contemporaneous with greenstone volcanism are documented. Elemental and Nd-Sr isotope data suggest that the TTGs originated by low and high pressure melting of heterogeneous mafic sources (thickened island arc or oceanic plateau crust) at different depths. Among the early accreted TTGs, magmatic protoliths of low-Al gneisses formed by low-pressure (10-12 kbar) melting of a depleted mafic source at shallow levels (island arc type crust) with plagioclase + amphibole +/- ilmenite in the residue, whilst high-Al gneisses were probably produced by high pressure melting (14-18 kbar) of a chondritic or a less depleted mafic source with garnet +/- amphibole +/- pyroxene + ilmenite in the residue (base of Island arc crust or thickened oceanic plateau). The 3230-3200 Ma trondhjemitic plutons marking the second accretion event derived by higher pressure (14-16 kbar) melting of a mafic source (island arc type crust with garnet +/- plagiocalse +/- hornblende + ilmenite) with a minor involvement of previously accreted TTGs. This plutonism was coeval with a major phase of crustal-scale diapiric overturn that had a major imprint on crustal reworking. A later magmatic episode at ca. 3100 Ma produced granitic plutons derived from crustal melting and leucocratic gneisses derived from a depleted mafic source in the lower crust. Documentation of depleted shallow and deep mantle reservoirs during 3350-3280 Ma magmatism implies massive differentiation of the mantle during an earlier episode of crust formation around 3800-600 Ma, as substantiated by Nd model ages and published Pb-isotope data, as well as U-Pb detrital zircon ages with in situ Hf isotope data

    Geochronological constraints on Meso- and Neoarchean regional metamorphism and magmatism in the Dharwar craton, southern India

    No full text
    This contribution addresses the time framework of the regional metamorphism in the three crustal provinces making the Archean Dharwar craton. We present results of texturally controlled in situ EPMA chemical dating of monazites, chemical dating of monazite separates, as well as Sm–Nd garnet–whole rock isochrons and SHRIMP U–Pb zircon ages for pelites, amphibolites and granitoids over target areas typical of the various crustal levels of the provinces. The Western Dharwar craton has undergone a major thermal pulse at 2.52 Ga followed by slow cooling to ca. 2.4 Ga and recorded earlier thermal events around 3.0 Ga and 3.1 Ga. The Central Dharwar craton records a major high-grade thermal imprint at ca. 2.55–2.51 Ga followed by cooling up to 2.45 Ga and earlier thermal events at ca. 2.62 and 3.20 Ga. In the Eastern Dharwar craton the widespread thermal pulse between 2.55 and 2.52 Ga is best recorded. From 2.52 Ga on, the entire craton ultimately and contemporaneously undergoes the main event of regional HT–LP metamorphism. The contrasted thermal records of the three provinces reflect their accretion age(s) and their degree of involvement in a wide Latest Archean hot orogen, which sets the capacity of these lithospheric segments to be impact by deformation and mantle fluxes. The tectonic setting of Latest Archean hot orogeny is compatible with active plate margin processes having interacted with mantle instabilities (i.e., plumes?). The tectonic setting of pre-2.5 Ga thermal pulses is difficult to assess, but considering their systematic links with documented magmatic pulses, they may have been generated in contexts comparable that of Latest Archean hot orogeny where lateral constrictional flow of hot orogenic crust achieves gravity driven flow, 3D mass redistribution of viscous lower crust submitted to convergence
    corecore