181 research outputs found

    Use of Scenari-aid to aid Maintenance of Stuttering Therapy Outcomes

    Get PDF
    AbstractScenari-Aid is a free online tool providing real-world simulation activities. This study investigated if using Scenari-Aid improves maintenance of stuttering therapy outcomes. An ABAB single subject design (A: pre-access and withdrawal; B: Scenari-Aid access) was used. Post-treatment gains in communication attitude and social participation were maintained 6-months post-treatment. Some improvements in weekly measures were present from A1 to B1 but there were no changesfrom B1 to A2 or A2 to B2. The participant reported using Scenari-Aid to aid initial desensitisation and then only occasionally. Further research is necessary to clarify the role of Scenari-Aid in the maintenance of treatment gains

    Evaluation of Florpyrauxifenbenzyl for the control of Cyperus aromaticus (Navua sedge).

    Get PDF
    Background: Cyperus aromaticus (Navua sedge) is a creeping perennial sedge common to tropical environments, currently threatening many agroecosystems and ecosystems in Pacific Island countries and northern Queensland in Australia. Objective: A glasshouse study was conducted to evaluate the efficacy of florpyrauxifen-benzyl on C. aromaticus plants with and without established rhizomes. Methods: The plants with established rhizomes were treated at three application times being mowed, pre-flowering and flowering growth stages and plants without established rhizomes were treated at seedling, pre-flowering and flowering growth stages. At each application time, plants were treated with four rates of florpyrauxifen-benzyl: 0, 15, 30 and 60 g a.i. ha−1 and control. Results: There was no mortality in the plants with established rhizomes. Reduction in the number of tillers was observed at four weeks after treatment (WAT) in plants treated with 30 and 60 g a.i. ha−1 of herbicide, however, there was new growth from the rhizomes and the number of tillers increased at 8 WAT. Conversely, florpyrauxifen-benzyl provided above 95% control in plants without established rhizomes. Conclusions: These results indicate florpyrauxifen-benzyl can help manage a new C. aromaticus infestation prior to the establishment of rhizomes. However, it has little to no impact on C. aromaticus plants with established rhizomes, and other management options should be employed to control them

    Mobilization of HIV Spread by Diaphanous 2 Dependent Filopodia in Infected Dendritic Cells

    Get PDF
    Paramount to the success of persistent viral infection is the ability of viruses to navigate hostile environments en route to future targets. In response to such obstacles, many viruses have developed the ability of establishing actin rich-membrane bridges to aid in future infections. Herein through dynamic imaging of HIV infected dendritic cells, we have observed how viral high-jacking of the actin/membrane network facilitates one of the most efficient forms of HIV spread. Within infected DC, viral egress is coupled to viral filopodia formation, with more than 90% of filopodia bearing immature HIV on their tips at extensions of 10 to 20 µm. Live imaging showed HIV filopodia routinely pivoting at their base, and projecting HIV virions at µm.sec−1 along repetitive arc trajectories. HIV filopodial dynamics lead to up to 800 DC to CD4 T cell contacts per hour, with selection of T cells culminating in multiple filopodia tethering and converging to envelope the CD4 T-cell membrane with budding HIV particles. Long viral filopodial formation was dependent on the formin diaphanous 2 (Diaph2), and not a dominant Arp2/3 filopodial pathway often associated with pathogenic actin polymerization. Manipulation of HIV Nef reduced HIV transfer 25-fold by reducing viral filopodia frequency, supporting the potency of DC HIV transfer was dependent on viral filopodia abundance. Thus our observations show HIV corrupts DC to CD4 T cell interactions by physically embedding at the leading edge contacts of long DC filopodial networks

    In Vitro Derived Dendritic Cells trans-Infect CD4 T Cells Primarily with Surface-Bound HIV-1 Virions

    Get PDF
    In the prevailing model of HIV-1 trans-infection, dendritic cells (DCs) capture and internalize intact virions and transfer these virions to interacting T cells at the virological synapse. Here, we show that HIV-1 virions transmitted in trans from in vitro derived DCs to T cells principally originate from the surface of DCs. Selective neutralization of surface-bound virions abrogated trans-infection by monocyte-derived DCs and CD34-derived Langerhans cells. Under conditions mimicking antigen recognition by the interacting T cells, most transferred virions still derived from the cell surface, although a few were transferred from an internal compartment. Our findings suggest that attachment inhibitors could neutralize trans-infection of T cells by DCs in vivo

    Patients with treated indolent lymphomas immunized with BNT162b2 have reduced anti-spike neutralizing IgG to SARS-CoV-2 variants, but preserved antigen-specific T cell responses

    Get PDF
    Patients with indolent lymphoma undertaking recurrent or continuous B cell suppression are at risk of severe COVID-19. Patients and healthy controls (HC; N = 13) received two doses of BNT162b2: follicular lymphoma (FL; N = 35) who were treatment naïve (TN; N = 11) or received immunochemotherapy (ICT; N = 23) and Waldenström's macroglobulinemia (WM; N = 37) including TN (N = 9), ICT (N = 14), or treated with Bruton's tyrosine kinase inhibitors (BTKi; N = 12). Anti-spike immunoglobulin G (IgG) was determined by a high-sensitivity flow-cytometric assay, in addition to live-virus neutralization. Antigen-specific T cells were identified by coexpression of CD69/CD137 and CD25/CD134 on T cells. A subgroup (N = 29) were assessed for third mRNA vaccine response, including omicron neutralization. One month after second BNT162b2, median anti-spike IgG mean fluorescence intensity (MFI) in FL ICT patients (9977) was 25-fold lower than TN (245 898) and HC (228 255, p =.0002 for both). Anti-spike IgG correlated with lymphocyte count (r =.63; p =.002), and time from treatment (r =.56; p =.007), on univariate analysis, but only with lymphocyte count on multivariate analysis (p =.03). In the WM cohort, median anti-spike IgG MFI in BTKi patients (39 039) was reduced compared to TN (220 645, p =.0008) and HC (p <.0001). Anti-spike IgG correlated with neutralization of the delta variant (r =.62, p <.0001). Median neutralization titer for WM BTKi (0) was lower than HC (40, p <.0001) for early-clade and delta. All cohorts had functional T cell responses. Median anti-spike IgG decreased 4-fold from second to third dose (p =.004). Only 5 of 29 poor initial responders assessed after third vaccination demonstrated seroconversion and improvement in neutralization activity, including to the omicron variant

    The Achilles Heel of the Trojan Horse Model of HIV-1 trans-Infection

    Get PDF
    To ensure their survival, microbial pathogens have evolved diverse strategies to subvert host immune defenses. The human retrovirus HIV-1 has been proposed to hijack the natural endocytic function of dendritic cells (DCs) to infect interacting CD4 T cells in a process termed trans-infection. Although DCs can be directly infected by certain strains of HIV-1, productive infection of DCs is not required during trans-infection; instead, DCs capture and internalize infectious HIV-1 virions in vesicles for later transmission to CD4 T cells via vesicular exocytosis across the infectious synapse. This model of sequential endocytosis and exocytosis of intact HIV-1 virions has been dubbed the “Trojan horse” model of HIV-1 trans-infection. While this model gained rapid favor as a strong example of how a pathogen exploits the natural properties of its cellular host, our recent studies challenge this model by showing that the vast majority of virions transmitted in trans originate from the plasma membrane rather than from intracellular vesicles. This review traces the experimental lines of evidence that have contributed to what we view as the “rise and decline” of the Trojan horse model of HIV-1 trans-infection

    HIV and Mature Dendritic Cells: Trojan Exosomes Riding the Trojan Horse?

    Get PDF
    Exosomes are secreted cellular vesicles that can induce specific CD4+ T cell responses in vivo when they interact with competent antigen-presenting cells like mature dendritic cells (mDCs). The Trojan exosome hypothesis proposes that retroviruses can take advantage of the cell-encoded intercellular vesicle traffic and exosome exchange pathway, moving between cells in the absence of fusion events in search of adequate target cells. Here, we discuss recent data supporting this hypothesis, which further explains how DCs can capture and internalize retroviruses like HIV-1 in the absence of fusion events, leading to the productive infection of interacting CD4+ T cells and contributing to viral spread through a mechanism known as trans-infection. We suggest that HIV-1 can exploit an exosome antigen-dissemination pathway intrinsic to mDCs, allowing viral internalization and final trans-infection of CD4+ T cells. In contrast to previous reports that focus on the ability of immature DCs to capture HIV in the mucosa, this review emphasizes the outstanding role that mature DCs could have promoting trans-infection in the lymph node, underscoring a new potential viral dissemination pathway

    Surfactant protein D modulates HIV infection of both T-cells and dendritic cells

    Get PDF
    Surfactant Protein D (SP-D) is an oligomerized C-type lectin molecule with immunomodulatory properties and involvement in lung surfactant homeostasis in the respiratory tract. SP-D binds to the enveloped viruses, influenza A virus and respiratory syncytial virus and inhibits their replication in vitro and in vivo. SP-D has been shown to bind to HIV via the HIV envelope protein gp120 and inhibit infectivity in vitro. Here we show that SP-D binds to different strains of HIV (BaL and IIIB) and the binding occurs at both pH 7.4 and 5.0 resembling physiological relevant pH values found in the body and the female urogenital tract, respectively. The binding of SP-D to HIV particles and gp120 was inhibited by the presence of several hexoses with mannose found to be the strongest inhibitor. Competition studies showed that soluble CD4 and CVN did not interfere with the interaction between SP-D and gp120. However, soluble recombinant DC-SIGN was shown to inhibit the binding between SP-D and gp120. SP-D agglutinated HIV and gp120 in a calcium dependent manner. SP-D inhibited the infectivity of HIV strains at both pH values of 7.4 and 5.0 in a concentration dependent manner. The inhibition of the infectivity was abolished by the presence of mannose. SP-D enhanced the binding of HIV to immature monocyte derived dendritic cells (iMDDCs) and was also found to enhance HIV capture and transfer to the T-cell like line PM1. These results suggest that SP-D can bind to and inhibit direct infection of T-cells by HIV but also enhance the transfer of infectious HIV particles from DCs to T-cells in vivo

    SARS Coronavirus-2 microneutralisation and commercial serological assays correlated closely for some but not all enzyme immunoassays

    Get PDF
    Serological testing for SARS-CoV-2-specific antibodies provides important research and diagnostic information relating to COVID-19 prevalence, incidence and host immune response. A greater understanding of the relationship between functionally neutralising antibodies detected using microneutralisation assays and binding antibodies detected using scalable enzyme immunoassays (EIA) is needed in order to address protective immunity post-infection or vaccination, and assess EIA suitability as a surrogate test for screening of convalescent plasma donors. We assessed whether neutralising antibody titres correlated with signal cut-off ratios in five commercially available EIAs, and one in-house assay based on expressed spike protein targets. Sera from recovered patients or convalescent plasma donors who reported laboratory-confirmed SARS-CoV-2 infection (n = 200), and negative control sera collected prior to the COVID-19 pandemic (n = 100), were assessed in parallel. Performance was assessed by calculating EIA sensitivity and specificity with reference to microneutralisation. Neutralising antibodies were detected in 166 (83%) samples. Compared with this, the most sensitive EIAs were the Cobas Elecsys Anti-SARS-CoV-2 (98%) and Vitros Immunodiagnostic Anti-SARS-CoV-2 (100%), which detect total antibody targeting the N and S1 antigens, respectively. The assay with the best quantitative relationship with microneutralisation was the Euroimmun IgG. These results suggest the marker used (total Ab vs. IgG vs. IgA) and the target antigen are important determinants of assay performance. The strong correlation between microneutralisation and some commercially available assays demonstrates their potential for clinical and research use in assessing protection following infection or vaccination, and use as a surrogate test to assess donor suitability for convalescent plasma donation

    In Situ Distribution of HIV-Binding CCR5 and C-Type Lectin Receptors in the Human Endocervical Mucosa

    Get PDF
    The endocervical mucosa is believed to be a primary site of HIV transmission. However, to date there is little known about the distribution of the HIV co-receptor CCR5 and the HIV-binding C-type lectin receptors, including Langerin, dendritic cell (DC)-specific intercellular adhesion molecule-grabbing non-integrin (DC-SIGN) and mannose receptor (MR) at this site. We therefore characterized the expression of these molecules in the endocervix of HIV seronegative women by computerized image analysis. Endocervical tissue biopsies were collected from women (n = 6) undergoing hysterectomy. All study individuals were diagnosed with benign and non-inflammatory diseases. CCR5+ CD4+ CD3+ T cells were found within or adjacent to the endocervical epithelium. The C-type lectin Langerin was expressed by intraepithelial CD1a+ CD4+ and CD11c+ CD4+ Langerhans cells, whereas DC-SIGN+ MR+ CD11c myeloid dendritic cells and MR+ CD68+ macrophages were localized in the submucosa of the endocervix. The previously defined immune effector cells including CD8+, CD56+, CD19+ and IgD+ cells were also found in the submucosa as well as occasional CD123+ BDCA-2+ plasmacytoid dendritic cells. Understanding the spatial distribution of potential HIV target cells and immune effector cells in relation to the endocervical canal forms a basis for deciphering the routes of HIV transmission events in humans as well as designing HIV-inhibiting compounds
    corecore