1,604 research outputs found

    Structural relaxation in the hydrogen-bonding liquids N-methylacetamide and water studied by optical Kerr-effect spectroscopy

    Full text link
    Structural relaxation in the peptide model N-methylacetamide (NMA) is studied experimentally by ultrafast optical Kerr-effect spectroscopy over the normal-liquid temperature range and compared to the relaxation measured in water at room temperature. It is seen that in both hydrogen-bonding liquids, beta relaxation is present and in each case it is found that this can be described by the Cole-Cole function. For NMA in this temperature range, the alpha and beta relaxations are each found to have an Arrhenius temperature dependence with indistinguishable activation energies. It is known that the variations on the Debye function, including the Cole-Cole function, are unphysical, and we introduce two general modifications: one allows for the initial rise of the function, determined by the librational frequencies, and the second allows the function to be terminated in the alpha relaxation

    Structure and dynamics in protic ionic liquids: a combined optical Kerr-effect and dielectric relaxation spectroscopy study

    Get PDF
    The structure and dynamics of ionic liquids (ILs) are unusual due to the strong interactions between the ions and counter ions. These microscopic properties determine the bulk transport properties critical to applications of ILs such as advanced fuel cells. The terahertz dynamics and slower relaxations of simple alkylammonium nitrate protic ionic liquids (PILs) are here studied using femtosecond optical Kerr-effect spectroscopy, dielectric relaxation spectroscopy, and terahertz time-domain spectroscopy. The observed dynamics give insight into more general liquid behaviour while comparison with glass-forming liquids reveals an underlying power-law decay and relaxation rates suggest supramolecular structure and nanoscale segregation

    The dynamic crossover in water does not require bulk water

    Get PDF
    Many of the anomalous properties of water may be explained by invoking a second critical point that terminates the coexistence line between the low- and high-density amorphous states in the liquid. Direct experimental evidence of this point, and the associated polyamorphic liquid–liquid transition, is elusive as it is necessary for liquid water to be cooled below its homogeneous-nucleation temperature. To avoid crystallization, water in the eutectic LiCl solution has been studied but then it is generally considered that “bulk” water cannot be present. However, recent computational and experimental studies observe cooperative hydration in which case it is possible that sufficient hydrogen-bonded water is present for the essential characteristics of water to be preserved. For femtosecond optical Kerr-effect and nuclear magnetic resonance measurements, we observe in each case a fractional Stokes–Einstein relation with evidence of the dynamic crossover appearing near 220 K and 250 K respectively. Spectra obtained in the glass state also confirm the complex nature of the hydrogen-bonding modes reported for neat room-temperature water and support predictions of anomalous diffusion due to “worm-hole” structure

    GABA-B receptor function in healthy volunteers, a pharmacokinetic and pharmacodynamic study of two doses of baclofen compared to placebo

    Get PDF
    AIMS AND HYPOTHESIS To assess the subjective and objective effects of baclofen on brain function in healthy volunteers. BACKGROUND Recent evidence suggests baclofen, a γ-aminobutyric acid type B (GABA-B) receptor agonist, reduces alcohol consumption and craving and promotes abstinence in alcoholics. However, characterisation of the GABA-B receptor system in clinical addiction is limited, and it is unclear why some patients require, or tolerate, higher doses to treat alcoholism. This study assesses the effects of baclofen on brain function in healthy volunteers to inform future studies investigating the sensitivity of GABA-B receptors in alcohol addiction. METHODS Eight healthy male volunteers completed a double blind randomised 3-way cross over study, receiving oral placebo (vitamin C 100mg), 10mg and 60mg baclofen. Subjective and objective measurements were taken at baseline (before medication) and at +30mins, 1, 2, 3, 4 and 6 hours after dosing. Objective measures included blood plasma samples, heart rate and blood pressure. Subjective measures included; the Subjective High Assessment Questionnaire (SHAS), visual analogue scales for sleepy, relaxed, tense and alert and a motor coordination task (zig-zag task). Pharmacokinetic data was obtained using liquid chromatography mass-spectrometry (LC-MS) to measure plasma baclofen concentrations. RESULTS 60mg Baclofen showed changes in subjective measures peaking at 2 hours post dosing compared with placebo, including a significant increase (p<0.05) in total SHAS scores with individual items, including feeling ‘drunk or intoxicated’, effects of alcohol and ‘muddled or confused’ particular affected.. Systolic blood pressure was significantly increased (p<0.05) at the 2 hours post 60mg dose. For both 10mg and 60mg baclofen, peak plasma concentration was achieved 60 minutes post dose. Pharmacokinetic data will be presented. There were no significant changes in these measures between 10mg Baclofen and placebo. CONCLUSIONS The objective and subjective measures used in this study are able to differentiate between placebo and 60mg baclofen. These findings will inform further research investigating the sensitivity of GABA-B receptors in alcohol addiction

    Phonon-like hydrogen-bond modes in protic ionic liquids

    Get PDF
    Gigahertz- to terahertz-frequency infrared and Raman spectra contain a wealth of information concerning the structure, intermolecular forces, and dynamics of ionic liquids. However, these spectra generally have a large number of contributions ranging from slow diffusional modes to underdamped librations and intramolecular vibrational modes. This makes it difficult to isolate effects such as the role of Coulombic and hydrogen-bonding interactions. We have applied far-infrared and ultrafast optical Kerr effect spectroscopies on carefully selected ions with a greater or lesser degree of symmetry in order to isolate spectral signals of interest. This has allowed us to demonstrate the presence of longitudinal and transverse optical phonon modes and a great similarity of alkylammonium-based protic ionic liquids to liquid water. The data show that such phonon modes will be present in all ionic liquids, requiring a reinterpretation of their spectra

    Glasslike Behavior in Aqueous Electrolyte Solutions

    Get PDF
    When salts are added to water, the viscosity generally increases suggesting the ions increase the strength of the water's hydrogen-bond network. However, infrared pump-probe measurements on electrolyte solutions have found that ions have no influence on the rotational dynamics of water molecules implying no enhance-ment or breakdown of the hydrogen-bond network. Here we report optical Kerr-effect and dielectric relaxa-tion spectroscopic measurements, which have enabled us to separate the effects of rotational and transitional motions of the water molecules. These data show that electrolyte solutions behave like a supercooled liquid approaching a glass transition in which rotational and translational molecular motions are decoupled. It is now possible to understand previously conflicting viscosity data, nuclear magnetic resonance relaxation, and ultrafast infrared spectroscopy in a single unified picture

    Terahertz underdamped vibrational motion governs protein-ligand binding in solution

    Get PDF
    Low-frequency collective vibrational modes in proteins have been proposed as being responsible for efficiently directing biochemical reactions and biological energy transport. However, evidence of the existence of delocalized vibrational modes is scarce and proof of their involvement in biological function absent. Here we apply extremely sensitive femtosecond optical Kerr-effect spectroscopy to study the depolarized Raman spectra of lysozyme and its complex with the inhibitor triacetylchitotriose in solution. Underdamped delocalized vibrational modes in the terahertz frequency domain are identified and shown to blue-shift and strengthen upon inhibitor binding. This demonstrates that the ligand-binding coordinate in proteins is underdamped and not simply solvent-controlled as previously assumed. The presence of such underdamped delocalized modes in proteins may have significant implications for the understanding of the efficiency of ligand binding and protein–molecule interactions, and has wider implications for biochemical reactivity and biological function

    Psoriasis vulgaris flare during efalizumab therapy does not preclude future use: a case series

    Get PDF
    BACKGROUND: Severe psoriasis vulgaris can be extremely difficult to treat in some patients, even with the newer biological therapies available today. CASE PRESENTATIONS: We present two patients with severe chronic plaque psoriasis who received numerous systemic anti-psoriatic therapies with varied results. Both responded well to initial treatment with efalizumab (anti-CD11a), but then experienced a flare of their disease after missing a dose. However, after disease stablization, both patients responded well to re-introduction of efalizumab, one patient requiring concurrent treatment with infliximab (anti-TNF-α). CONCLUSION: These cases are presented to characterize this "flare" reaction, and to inform health care providers that efalizumab can still be administered after disease flare, and again may be a successful therapy

    Waterborne Elizabethkingia meningoseptica in adult critical care

    No full text
    Elizabethkingia meningoseptica is an infrequent colonizer of the respiratory tract; its pathogenicity is uncertain. In the context of a 22-month outbreak of E. meningoseptica acquisition affecting 30 patients in a London, UK, critical care unit (3% attack rate) we derived a measure of attributable morbidity and determined whether E. meningoseptica is an emerging nosocomial pathogen. We found monomicrobial E. meningoseptica acquisition (n = 13) to have an attributable morbidity rate of 54% (systemic inflammatory response syndrome >2, rising C-reactive protein, new radiographic changes), suggesting that E. meningoseptica is a pathogen. Epidemiologic and molecular evidence showed acquisition was water-source–associated in critical care but identified numerous other E. meningoseptica strains, indicating more widespread distribution than previously considered. Analysis of changes in gram-negative speciation rates across a wider London hospital network suggests this outbreak, and possibly other recently reported outbreaks, might reflect improved diagnostics and that E. meningoseptica thus is a pseudo-emerging pathogen
    • 

    corecore