5 research outputs found
Patterns in the relationship between life expectancy and gross domestic product in Russia in 2005-15: a cross-sectional analysis.
BACKGROUND: Since 2005, Russia has made substantial progress, experiencing an almost doubling of per-capita gross domestic product by purchasing power parity (GDP [PPP]) to US43 000 in 2015 and with a life expectancy of 75·5 years. We aimed to investigate whether mortality levels now seen in Russia are consistent with what would be expected given this new level of per-capita wealth. METHODS: We used per-capita GDP (PPP) and life expectancy from 61 countries in 2014-15, plus those of Russia as a whole and its capital Moscow, to construct a Preston curve expressing the relationship between mortality and national wealth and to examine the positions of Russia and other populations relative to this curve. We adjusted life expectancy values for Moscow for underestimation of mortality at older ages. For comparison, we constructed another Preston curve based on the same set of countries for the year 2005. We used the stepwise replacement algorithm to decompose mortality differences between Russia or Moscow and comparator countries with similar incomes into age and cause-of-death components. FINDINGS: Life expectancy in 2015 for both Russia and Moscow lay below the Preston-curve-based expectations by 6·5 years and 4·9 years, respectively. In 2015, Russia had a lower per-capita income than 36 of the comparator countries but lower life expectancy than 60 comparator countries. However, the gaps between the observed and the Preston-expected life expectancy values for Russia have diminished by about 25% since 2005, when the life expectancy gap was 8·9 years for Russia and 6·6 years for Moscow. When compared with countries with similar level of income, the largest part of the life expectancy deficit was produced by working-age mortality from external causes for Russia and cardiovascular disease at older ages for Moscow. INTERPRETATION: Given the economic wealth of Russia, its life expectancy could be substantially higher. Sustaining the progress seen over the past decade depends on the ability of the Russian Government and society to devote adequate resources to people's health. FUNDING: This work was partly funded through the International Project on Cardiovascular Disease in Russia supported by a Wellcome Trust Strategic Award (100217) and was supported by the Russian Academic Excellence Project 5-100
Comparability and validity of cancer registry data in the northwest of Russia
Background: Despite the elaborate history of statistical reporting in the USSR, Russia established modern population-based cancer registries (PBCR) only in the 1990s. The quality of PBCRs data has not been thoroughly analyzed. This study aims at assessing the comparability and validity of cancer statistics in regions of the Northwestern Federal District (NWFD) of Russia. Material and methods: Data from ten Russian regional PBCRs covering ∼13 million (∼5 million in St. Petersburg) were processed in line with IARC/IACR and ENCR recommendations. We extracted and analyzed all registered cases but focused on cases diagnosed between 2008 and 2017. For comparability and validity assessment, we applied established qualitative and quantitative methods. Results: Data collection in NWFD is in line with international standards. Distributions of diagnosis dates revealed higher variation in several regions, but overall, distributions are relatively uniform. The proportion of multiple primaries between 2008 and 2017 ranged from 6.7% in Vologda Oblast to 12.4% in Saint-Petersburg. We observed substantial regional heterogeneity for most indicators of validity. In 2013–2017, proportions of morphologically verified cases ranged between 61.7 and 89%. Death certificates only (DCO) cases proportion was in the range of 1–14% for all regions, except for Saint-Petersburg (up to 23%). The proportion of cases with a primary site unknown was between 1 and 3%. Certain cancer types (e.g., pancreas, liver, hematological malignancies, and CNS tumors) and cancers in older age groups showed lower validity. Conclusion: While the overall level of comparability and validity of PBCRs data of four out of ten regions of NWFD of Russia meets the international standards, differences between the regions are substantial. The local instructions for cancer registration need to be updated and implemented. The data validity assessment also reflects pitfalls in the quality of diagnosis of certain cancer types and patient groups.acceptedVersionPeer reviewe
CoDA
Compositional forecast of cancer mortality by sex and localizations for Russia for 202
History and current status of cancer registration in Russia
Background: Russia, then part of the Union of Soviet Socialist Republics (the USSR), introduced compulsory cancer registration in 1953, but a clear overall contemporary description of the cancer surveillance system in Russia is not available. Methods: We summarized historical landmarks and the development of the standards of classification and coding of neoplasms in Russia and described current population-based cancer registries' (PBCR) procedures and practices. Results: Cancer registration is organized according to the administrative division of the Russian Federation. More than 600,000 cases are registered annually. All medical facilities, without exception, are required to notify the PBCR about newly diagnosed cases, and each regional PBCR is responsible for registering all cancers diagnosed in citizens residing in the region. The data collection can be described as passive and exhaustive. Hematological malignancies, brain, and CNS tumors are often not referred to cancer hospitals in some regions, explaining the problems in registering these cancers. Conclusion: Russia's cancer registration system is population-based, and practices seem to be generally internationally comparable. However, coding practices and national guidelines are still outdated and not up to the most recent international recommendations. Further analyses are needed to assess the comparability, validity, completeness, and timeliness of Russia's PBCRs data.publishedVersionPeer reviewe
Completeness of regional cancer registry data in Northwest Russia 2008-2017
Abstract Background A national framework for population-based cancer registration was established in Russia in the late 1990s. Data comparability and validity analyses found substantial differences across ten population-based cancer registries (PBCRs)in Northwest Russia, and only four out of ten met international standards. This study aimed to assess the completeness of the PBCR data of those registries. Methods Qualitative and quantitative methods recommended for completeness and timeliness assessment were applied to the data from ten Russian regional PBCRs in Northwest Russia, covering a population of 13 million. We used historic data methods (using several European PBCRs reference rates), mortality-to-incidence ratios (M:I) comparison, and death certificate methods to calculate the proportion of unregistered cases (Lincoln-Petersen estimator and Ajiki formula). Results Incidence rate trends of different cancer types were stable over time (except one region - Leningrad oblast). A slight drop in incidence rates in older age groups for several sites in the Northwestern regions was observed compared to the reference from European countries. Comparing M:I ratios against five-year survival revealed systematic differences in Leningrad oblast and Vologda oblast. Assessment of completeness revealed low or unrealistic estimates in Leningrad oblast and completeness below 90% in St. Petersburg. In other regions, the completeness was above 90%. The national annual report between 2008-2017 did not include about 10% of the cases collected later in the registry database of St. Petersburg. This difference was below 3% for Arkhangelsk oblast, Murmansk oblast, Novgorod oblast, Vologda oblast and the Republic of Karelia. Conclusions Eight out of ten regional PBCRs in Northwest Russia collected data with an acceptable degree of completeness. Mostly populated St. Petersburg and Leningrad oblast did not reach such completeness. PBCR data from several regions in Northwest Russia are suitable for epidemiological research and monitoring cancer control activities