385 research outputs found

    An efficient algorithm for two-dimensional radiative transfer in axisymmetric circumstellar envelopes and disks

    Full text link
    We present an algorithm for two-dimensional radiative transfer in axisymmetric, circumstellar media. The formal integration of the transfer equation is performed by a generalization of the short characteristics (SC) method to spherical coordinates. Accelerated Lambda Iteration (ALI) and Ng's algorithm are used to converge towards a solution. By taking a logarithmically spaced radial coordinate grid, the method has the natural capability of treating problems that span several decades in radius, in the most extreme case from the stellar radius up to parsec scale. Flux conservation is guaranteed in spherical coordinates by a particular choice of discrete photon directions and a special treatment of nearly-radially outward propagating radiation. The algorithm works well from zero up to very high optical depth, and can be used for a wide variety of transfer problems, including non-LTE line formation, dust continuum transfer and high temperature processes such as compton scattering. In this paper we focus on multiple scattering off dust grains and on non-LTE transfer in molecular and atomic lines. Line transfer is treated according to an ALI scheme for multi-level atoms/molecules, and includes both random and systematic velocity fields. The algorithms are implemented in a multi-purpose user-friendly radiative transfer program named RADICAL. We present two example computations: one of dust scattering in the Egg Nebula, and one of non-LTE line formation in rotational transitions of HCO+^{+} in a flattened protostellar collapsing cloud.Comment: 18 pages, 32 figure

    The influence of magnetic field geometry on magnetars X-ray spectra

    Get PDF
    Nowadays, the analysis of the X-ray spectra of magnetically powered neutron stars or magnetars is one of the most valuable tools to gain insight into the physical processes occurring in their interiors and magnetospheres. In particular, the magnetospheric plasma leaves a strong imprint on the observed X-ray spectrum by means of Compton up-scattering of the thermal radiation coming from the star surface. Motivated by the increased quality of the observational data, much theoretical work has been devoted to develop Monte Carlo (MC) codes that incorporate the effects of resonant Compton scattering in the modeling of radiative transfer of photons through the magnetosphere. The two key ingredients in this simulations are the kinetic plasma properties and the magnetic field (MF) configuration. The MF geometry is expected to be complex, but up to now only mathematically simple solutions (self-similar solutions) have been employed. In this work, we discuss the effects of new, more realistic, MF geometries on synthetic spectra. We use new force-free solutions in a previously developed MC code to assess the influence of MF geometry on the emerging spectra. Our main result is that the shape of the final spectrum is mostly sensitive to uncertain parameters of the magnetospheric plasma, but the MF geometry plays an important role on the angle-dependence of the spectra.Comment: 6 pages, 4 figures To appear in Proceedings of II Iberian Nuclear Astrophysics Meeting held in Salamanca, September 22-23, 201

    Advection-dominated Inflow/Outflows from Evaporating Accretion Disks

    Get PDF
    In this Letter we investigate the properties of advection-dominated accretion flows (ADAFs) fed by the evaporation of a Shakura-Sunyaev accretion disk (SSD). In our picture the ADAF fills the central cavity evacuated by the SSD and extends beyond the transition radius into a coronal region. We find that, because of global angular momentum conservation, a significant fraction of the hot gas flows away from the black hole forming a transsonic wind, unless the injection rate depends only weakly on radius (if r2σ˙∝r−Οr^2\dot\sigma\propto r^{-\xi}, Ο<1/2\xi< 1/2). The Bernoulli number of the inflowing gas is negative if the transition radius is â‰Č100\lesssim 100 Schwarzschild radii, so matter falling into the hole is gravitationally bound. The ratio of inflowing to outflowing mass is ≈1/2\approx 1/2, so in these solutions the accretion rate is of the same order as in standard ADAFs and much larger than in advection-dominated inflow/outflow models (ADIOS). The possible relevance of evaporation-fed solutions to accretion flows in black hole X-ray binaries is briefly discussed.Comment: 5 pages Latex with 2 ps figures. Accepted for publication in ApJ Letter

    VLT/FORS2 observations of the optical counterpart of the isolated neutron star RBS 1774

    Full text link
    X-ray observations performed with ROSAT led to the discovery of a group (seven to date) of X-ray dim and radio-silent middle-aged isolated neutron stars (a.k.a. XDINSs), which are characterised by pure blackbody spectra (kT~40-100 eV), long X-ray pulsations (P=3-12 s), and appear to be endowed with relatively high magnetic fields, (B~10d13-14 G). RBS 1774 is one of the few XDINSs with a candidate optical counterpart, which we discovered with the VLT. We performed deep observations of RBS 1774 in the R band with the VLT to disentangle a non-thermal power-law spectrum from a Rayleigh-Jeans, whose contributions are expected to be very much different in the red part of the spectrum. We did not detect the RBS 1774 candidate counterpart down to a 3 sigma limiting magnitude of R~27. The constraint on its colour, (B-R)<0.6, rules out that it is a background object, positionally coincident with the X-ray source. Our R-band upper limit is consistent with the extrapolation of the B-band flux (assuming a 3 sigma uncertainty) for a set of power-laws F_nu ~nu^alpha with spectral indeces alpha<0.07. If the optical spectrum of RBS 1774 were non-thermal, its power-law slope would be very much unlike those of all isolated neutron stars with non-thermal optical emission, suggesting that it is most likely thermal. For instance, a Rayleigh-Jeans with temperature T_O = 11 eV, for an optically emitting radius r_O=15 km and a source distance d=150 pc, would be consistent with the optical measurements. The implied low distance is compatible with the 0.04 X-ray pulsed fraction if either the star spin axis is nearly aligned with the magnetic axis or with the line of sight, or it is slightly misaligned with respect to both the magnetic axis and the line of sight by 5-10 degreesComment: 8 pages, 8 postscript figures, accepted for publication in Astronomy & Astrophysic

    Radiative acceleration and transient, radiation-induced electric fields

    Full text link
    The radiative acceleration of particles and the electrostatic potential fields that arise in low density plasmas hit by radiation produced by a transient, compact source are investigated. We calculate the dynamical evolution and asymptotic energy of the charged particles accelerated by the photons and the radiation-induced electric double layer in the full relativistic, Klein-Nishina regime. For fluxes in excess of 102710^{27} ergcm−2s−1{\rm erg} {\rm cm}^{-2} {\rm s}^{-1}, the radiative force on a diluted plasma (n\la 10^{11} cm−3^{-3}) is so strong that electrons are accelerated rapidly to relativistic speeds while ions lag behind owing to their larger inertia. The ions are later effectively accelerated by the strong radiation-induced double layer electric field up to Lorentz factors ≈100\approx 100, attainable in the case of negligible Compton drag. The asymptotic energies achieved by both ions and electrons are larger by a factor 2--4 with respect to what one could naively expect assuming that the electron-ion assembly is a rigidly coupled system. The regime we investigate may be relevant within the framework of giant flares from soft gamma-repeaters.Comment: 14 pages, 7 figures, ApJ, in press (tentatively scheduled for the v. 592, 2003 issue

    Evidence for precession of the isolated neutron star RX J0720.4-3125

    Full text link
    The XMM-Newton spectra of the isolated neutron star RX J0720.4-3125 obtained over 4.5 years can be described by sinusoidal variations in the inferred blackbody temperature, the size of the emitting area and the depth of the absorption line with a period of 7.1 +/- 0.5 years, which we suggest to be the precession period of the neutron star. Precession of a neutron star with two hot spots of different temperature and size, probably not located exactly in antipodal positions, may account for the variations in the X-ray spectra, changes in the pulsed fraction, shape of the light curve and the phase-lag between soft and hard energy bands observed from RX J0720.4-3125. An independent sinusoidal fit to published and new pulse timing residuals from a coherent analysis covering ~12 years yields a consistent period of 7.7 +/- 0.6 years supporting the precession model.Comment: Accepted for publication in A&A Letters, 5 pages, 5 figure

    Broad redshifted line as a signature of outflow

    Full text link
    We formulate and solve the diffusion problem of line photon propagation in a bulk outflow from a compact object (black hole or neutron star) using a generic assumption regarding the distribution of line photons within the outflow. Thomson scattering of the line photons within the expanding flow leads to a decrease of their energy which is of first order in v/c, where v is the outflow velocity and c is the speed of light. We demonstrate that the emergent line profile is closely related to the time distribution of photons diffusing through the flow (the light curve) and consists of a broad redshifted feature. We analyzed the line profiles for the general case of outflow density distribution. We emphasize that the redshifted lines are intrinsic properties of the powerful outflow that are supposed to be in many compact objects.Comment: 16 pages, 1 black-white figure and 2 color figures; accepted for publication in the Astrophysical Journa

    Space cowboys odyssey: beyond the Gould Belt

    Full text link
    We present our new advanced model for population synthesis of close-by cooling NSs. Detailed treatment of the initial spatial distribution of NS progenitors and a detailed ISM structure up to 3 kpc give us an opportunity to discuss the strategy to look for new isolated cooling NSs. Our main results in this respect are the following: new candidates are expected to be identified behind the Gould Belt, in directions to rich OB associations, in particular in the Cygnus-Cepheus region; new candidates, on average, are expected to be hotter than the known population of cooling NS. Besides the usual approach (looking for soft X-ray sources), the search in 'empty' Îł\gamma-ray error boxes or among run-away OB stars may yield new X-ray thermally emitting NS candidates.Comment: 3 pages, 2 figures, proceedings of the conference "40 Years of Pulsars ", 12-17 August 2007, Montreal, Canad

    Observations of Isolated Neutron Stars with the ESO Multi-Conjugate Adaptive Optics Demonstrator

    Get PDF
    High-energy observations have unveiled peculiar classes of isolated neutron stars which, at variance with radio pulsars, are mostly radio silent and not powered by the star rotation. Among these objects are the magnetars, hyper-magnetized neutron stars characterized by transient X-ray/gamma-ray emission, and neutron stars with purely thermal, and in most cases stationary, X-ray emission (a.k.a., X-ray dim isolated neutron stars or XDINSs). While apparently dissimilar in their high-energy behavior and age, both magnetars and XDINSs have similar periods and unusually high magnetic fields. This suggests a tantalizing scenario where the former evolve into the latter.Discovering so far uninvestigated similarities between the multi-wavelength properties of these two classes would be a further step forward to establish an evolutionary scenario. A most promising channels is the near infrared (NIR) one, where magnetars are characterized by a distinctive spectral flattening with respect to the extrapolation of the soft X-ray spectrum.We observed the two XDINSs RX J0420.0-5022 and RX J1856.5-3754 with the Multi-Conjugate Adaptive Optics Demonstrator (MAD) at the Very Large Telescope (VLT) as part of the instrument guaranteed time observations program, to search for their NIR counterparts. Both RX J1856.5-3754 and RX J0420.0-5022 were not detected down to K_s ~20 and Ks ~21.5, respectively. In order to constrain the relation between XDINSs and magnetars it would be of importance to perform deeper NIR observations. A good candidate is 1RXS J214303.7+065419 which is the XDINS with the highest inferred magnetic field.Comment: Accepted for publication in Astronomy and Astrophysic

    Relativistic Radiative Transfer for Spherical Flows

    Full text link
    We present a new complete set of Lagrangian relativistic hydrodynamical equations describing the transfer of energy and momentum between a standard fluid and a radiation fluid in a general non-stationary spherical flow. The new set of equations has been derived for a particular application to the study of the cosmological Quark--Hadron transition but can also be used in other contexts.Comment: 28 pages, 9 postscript figs, Plain Te
    • 

    corecore