We present an algorithm for two-dimensional radiative transfer in
axisymmetric, circumstellar media. The formal integration of the transfer
equation is performed by a generalization of the short characteristics (SC)
method to spherical coordinates. Accelerated Lambda Iteration (ALI) and Ng's
algorithm are used to converge towards a solution. By taking a logarithmically
spaced radial coordinate grid, the method has the natural capability of
treating problems that span several decades in radius, in the most extreme case
from the stellar radius up to parsec scale. Flux conservation is guaranteed in
spherical coordinates by a particular choice of discrete photon directions and
a special treatment of nearly-radially outward propagating radiation. The
algorithm works well from zero up to very high optical depth, and can be used
for a wide variety of transfer problems, including non-LTE line formation, dust
continuum transfer and high temperature processes such as compton scattering.
In this paper we focus on multiple scattering off dust grains and on non-LTE
transfer in molecular and atomic lines. Line transfer is treated according to
an ALI scheme for multi-level atoms/molecules, and includes both random and
systematic velocity fields. The algorithms are implemented in a multi-purpose
user-friendly radiative transfer program named RADICAL. We present two example
computations: one of dust scattering in the Egg Nebula, and one of non-LTE line
formation in rotational transitions of HCO+ in a flattened protostellar
collapsing cloud.Comment: 18 pages, 32 figure