The radiative acceleration of particles and the electrostatic potential
fields that arise in low density plasmas hit by radiation produced by a
transient, compact source are investigated. We calculate the dynamical
evolution and asymptotic energy of the charged particles accelerated by the
photons and the radiation-induced electric double layer in the full
relativistic, Klein-Nishina regime. For fluxes in excess of 1027ergcm−2s−1, the radiative force on a diluted plasma
(n\la 10^{11} cm−3) is so strong that electrons are accelerated rapidly
to relativistic speeds while ions lag behind owing to their larger inertia. The
ions are later effectively accelerated by the strong radiation-induced double
layer electric field up to Lorentz factors ≈100, attainable in the
case of negligible Compton drag. The asymptotic energies achieved by both ions
and electrons are larger by a factor 2--4 with respect to what one could
naively expect assuming that the electron-ion assembly is a rigidly coupled
system. The regime we investigate may be relevant within the framework of giant
flares from soft gamma-repeaters.Comment: 14 pages, 7 figures, ApJ, in press (tentatively scheduled for the v.
592, 2003 issue