50 research outputs found

    The contribution of emission sources to the future air pollution disease burden in China

    Get PDF
    Air pollution exposure is a leading public health problem in China. Despite recent air quality improvements, fine particulate matter (PM2.5) exposure remains large, the associated disease burden is substantial, and population ageing is projected to increase the susceptibility to disease. Here, we used emulators of a regional chemical transport model to quantify the impacts of future emission scenarios on air pollution exposure in China. We estimated how key emission sectors contribute to these future health impacts from air pollution exposure. We found that PM2.5 exposure declines in all scenarios across China over 2020–2050, with reductions of 15% under current air quality legislation, 36% when exploiting the full potential of air pollutant emission reduction technologies, and 39% when that technical mitigation potential is combined with emission controls for climate mitigation. However, population ageing means that the PM2.5 disease burden under current legislation (CLE) increases by 17% in 2050 relative to 2020. In comparison to CLE in 2050, the application of the best air pollution technologies provides substantial health benefits, reducing the PM2.5 disease burden by 16%, avoiding 536 600 (95% uncertainty interval, 95UI: 497 800–573 300) premature deaths per year. These public health benefits are mainly due to reductions in industrial (43%) and residential (30%) emissions. Climate mitigation efforts combined with the best air pollution technologies leads to an additional 2% reduction in the PM2.5 disease burden, avoiding 57 000 (95UI: 52 800–61 100) premature deaths per year. Up to 90% of the 2020–2050 reductions in PM2.5 exposure are already achieved by 2030, assuming efficient implementation and enforcement of currently committed air quality policies in key sectors. Achieving reductions in PM2.5 exposure and the associated disease burden after 2030 will require further tightening of emission limits for regulated sectors, addressing other sources including agriculture and waste management, and international coordinated action to mitigate air pollution across Asia

    Technical efficiency of peripheral health units in Pujehun district of Sierra Leone: a DEA application

    Get PDF
    BACKGROUND: The Data Envelopment Analysis (DEA) method has been fruitfully used in many countries in Asia, Europe and North America to shed light on the efficiency of health facilities and programmes. There is, however, a dearth of such studies in countries in sub-Saharan Africa. Since hospitals and health centres are important instruments in the efforts to scale up pro-poor cost-effective interventions aimed at achieving the United Nations Millennium Development Goals, decision-makers need to ensure that these health facilities provide efficient services. The objective of this study was to measure the technical efficiency (TE) and scale efficiency (SE) of a sample of public peripheral health units (PHUs) in Sierra Leone. METHODS: This study applied the Data Envelopment Analysis approach to investigate the TE and SE among a sample of 37 PHUs in Sierra Leone. RESULTS: Twenty-two (59%) of the 37 health units analysed were found to be technically inefficient, with an average score of 63% (standard deviation = 18%). On the other hand, 24 (65%) health units were found to be scale inefficient, with an average scale efficiency score of 72% (standard deviation = 17%). CONCLUSION: It is concluded that with the existing high levels of pure technical and scale inefficiency, scaling up of interventions to achieve both global and regional targets such as the MDG and Abuja health targets becomes far-fetched. In a country with per capita expenditure on health of about US$7, and with only 30% of its population having access to health services, it is demonstrated that efficiency savings can significantly augment the government's initiatives to cater for the unmet health care needs of the population. Therefore, we strongly recommend that Sierra Leone and all other countries in the Region should institutionalise health facility efficiency monitoring at the Ministry of Health headquarter (MoH/HQ) and at each health district headquarter

    Approachability in Stackelberg Stochastic Games with Vector Costs

    Get PDF
    The notion of approachability was introduced by Blackwell [1] in the context of vector-valued repeated games. The famous Blackwell's approachability theorem prescribes a strategy for approachability, i.e., for `steering' the average cost of a given agent towards a given target set, irrespective of the strategies of the other agents. In this paper, motivated by the multi-objective optimization/decision making problems in dynamically changing environments, we address the approachability problem in Stackelberg stochastic games with vector valued cost functions. We make two main contributions. Firstly, we give a simple and computationally tractable strategy for approachability for Stackelberg stochastic games along the lines of Blackwell's. Secondly, we give a reinforcement learning algorithm for learning the approachable strategy when the transition kernel is unknown. We also recover as a by-product Blackwell's necessary and sufficient condition for approachability for convex sets in this set up and thus a complete characterization. We also give sufficient conditions for non-convex sets.Comment: 18 Pages, Submitted to Dynamic Games and Application

    The effect of animal movement on line transect estimates of abundance

    Get PDF
    This work was supported by the University of St Andrews (http://www.st-andrews.ac.uk/; RG, STB, LT) and by a summer scholarship and PhD grant from The Carnegie Trust for the Universities of Scotland (http://www.carnegie-trust.org/) to RG.Line transect sampling is a distance sampling method for estimating the abundance of wild animal populations. One key assumption of this method is that all animals are detected at their initial location. Animal movement independent of the transect and observer can thus cause substantial bias. We present an analytic expression for this bias when detection within the transect is certain (strip transect sampling) and use simulation to quantify bias when detection falls off with distance from the line (line transect sampling). We also explore the non-linear relationship between bias, detection, and animal movement by varying detectability and movement type. We consider animals that move in randomly orientated straight lines, which provides an upper bound on bias, and animals that are constrained to a home range of random radius. We find that bias is reduced when animal movement is constrained, and bias is considerably smaller in line transect sampling than strip transect sampling provided that mean animal speed is less than observer speed. By contrast, when mean animal speed exceeds observer speed the bias in line transect sampling becomes comparable with, and may exceed, that of strip transect sampling. Bias from independent animal movement is reduced by the observer searching further perpendicular to the transect, searching a shorter distance ahead and by ignoring animals that may overtake the observer from behind. However, when animals move in response to the observer, the standard practice of searching further ahead should continue as the bias from responsive movement is often greater than that from independent movement.Publisher PDFPeer reviewe
    corecore