1,341 research outputs found

    The effect of high dose antibiotic impregnated cement on rate of surgical site infection after hip hemiarthroplasty for fractured neck of femur : a protocol for a double-blind quasi randomised controlled trial

    Get PDF
    Background: Mortality following hip hemiarthroplasty is in the range of 10-40% in the first year, with much attributed to post-operative complications. One such complication is surgical site infection (SSI), which at the start of this trial affected 4.68% of patients in the UK having this operation. Compared to SSI rates of elective hip surgery, at less than 1%, this figure is elevated. The aim of this quasi randomised controlled trial (RCT) is to determine if high dose antibiotic impregnated cement can reduce the SSI in patients at 12-months after hemiarthroplasty for intracapsular fractured neck of femur. Methods: 848 patients with an intracapsular fractured neck of femur requiring a hip hemiarthroplasty are been recruited into this two-centre double-blind quasi RCT. Participants were recruited before surgery and quasi randomised to standard care or intervention group. Participants, statistician and outcome assessors were blind to treatment allocation throughout the study. The intervention consisted of high dose antibiotic impregnated cement consisting of 1 gram Clindamycin and 1 gram of Gentamicin. The primary outcome is Health Protection Agency (HPA) defined deep surgical site infection at 12 months. Secondary outcomes include HPA defined superficial surgical site infection at 30 days, 30 and 90-day mortality, length of hospital stay, critical care stay, and complications. Discussion: Large randomised controlled trials assessing the effectiveness of a surgical intervention are uncommon, particularly in the speciality of orthopaedics. The results from this trial will inform evidence-based recommendations for antibiotic impregnated cement in the management of patients with a fractured neck of femur undergoing a hip hemiarthroplasty. If high dose antibiotic impregnated cement is found to be an effective intervention, implementation into clinical practice could improve long-term outcomes for patients undergoing hip hemiarthroplasty

    Transient peak-strain matching partially recovers the age-impaired mechanoadaptive cortical bone response

    Get PDF
    Mechanoadaptation maintains bone mass and architecture; its failure underlies age-related decline in bone strength. It is unclear whether this is due to failure of osteocytes to sense strain, osteoblasts to form bone or insufficient mechanical stimulus. Mechanoadaptation can be restored to aged bone by surgical neurectomy, suggesting that changes in loading history can rescue mechanoadaptation. We use non-biased, whole-bone tibial analyses, along with characterisation of surface strains and ensuing mechanoadaptive responses in mice at a range of ages, to explore whether sufficient load magnitude can activate mechanoadaptation in aged bone. We find that younger mice adapt when imposed strains are lower than in mature and aged bone. Intriguingly, imposition of short-term, high magnitude loading effectively primes cortical but not trabecular bone of aged mice to respond. This response was regionally-matched to highest strains measured by digital image correlation and to osteocytic mechanoactivation. These data indicate that aged bone’s loading response can be partially recovered, non-invasively by transient, focal high strain regions. Our results indicate that old murine bone does respond to load when the loading is of sufficient magnitude, and bones’ age-related adaptation failure may be due to insufficient mechanical stimulus to trigger mechanoadaptation

    String theoretic QCD axions in the light of PLANCK and BICEP2

    Get PDF
    The QCD axion solving the strong CP problem may originate from antisymmetric tensor gauge fields in compactified string theory, with a decay constant around the GUT scale. Such possibility appears to be ruled out now by the detection of tensor modes by BICEP2 and the PLANCK constraints on isocurvature density perturbations. A more interesting and still viable possibility is that the string theoretic QCD axion is charged under an anomalous U(1)_A gauge symmetry. In such case, the axion decay constant can be much lower than the GUT scale if moduli are stabilized near the point of vanishing Fayet-Illiopoulos term, and U(1)_A-charged matter fields get a vacuum value far below the GUT scale due to a tachyonic SUSY breaking scalar mass. We examine the symmetry breaking pattern of such models during the inflationary epoch with the Hubble expansion rate 10^{14} GeV, and identify the range of the QCD axion decay constant, as well as the corresponding relic axion abundance, consistent with known cosmological constraints. In addition to the case that the PQ symmetry is restored during inflation, there are other viable scenarios, including that the PQ symmetry is broken during inflation at high scales around 10^{16}-10^{17} GeV due to a large Hubble-induced tachyonic scalar mass from the U(1)_A D-term, while the present axion scale is in the range 10^{9}-5\times 10^{13} GeV, where the present value larger than 10^{12} GeV requires a fine-tuning of the axion misalignment angle. We also discuss the implications of our results for the size of SUSY breaking soft masses.Comment: 29 pages, 1 figure; v3: analysis updated including the full anharmonic effects, references added, version accepted for publication in JHE

    Cryptosporidium Priming Is More Effective than Vaccine for Protection against Cryptosporidiosis in a Murine Protein Malnutrition Model

    Get PDF
    Cryptosporidium is a major cause of severe diarrhea, especially in malnourished children. Using a murine model of C. parvum oocyst challenge that recapitulates clinical features of severe cryptosporidiosis during malnutrition, we interrogated the effect of protein malnutrition (PM) on primary and secondary responses to C. parvum challenge, and tested the differential ability of mucosal priming strategies to overcome the PM-induced susceptibility. We determined that while PM fundamentally alters systemic and mucosal primary immune responses to Cryptosporidium, priming with C. parvum (106 oocysts) provides robust protective immunity against re-challenge despite ongoing PM. C. parvum priming restores mucosal Th1-type effectors (CD3+CD8+CD103+ T-cells) and cytokines (IFNÎł, and IL12p40) that otherwise decrease with ongoing PM. Vaccination strategies with Cryptosporidium antigens expressed in the S. Typhi vector 908htr, however, do not enhance Th1-type responses to C. parvum challenge during PM, even though vaccination strongly boosts immunity in challenged fully nourished hosts. Remote non-specific exposures to the attenuated S. Typhi vector alone or the TLR9 agonist CpG ODN-1668 can partially attenuate C. parvum severity during PM, but neither as effectively as viable C. parvum priming. We conclude that although PM interferes with basal and vaccine-boosted immune responses to C. parvum, sustained reductions in disease severity are possible through mucosal activators of host defenses, and specifically C. parvum priming can elicit impressively robust Th1-type protective immunity despite ongoing protein malnutrition. These findings add insight into potential correlates of Cryptosporidium immunity and future vaccine strategies in malnourished children

    Analysis of high-molecular-weight fructan polymers in crude plant extracts by high-resolution LC-MS

    Get PDF
    The main water-soluble carbohydrates in temperate forage grasses are polymeric fructans. Fructans consist of fructose chains of various chain lengths attached to sucrose as a core molecule. In grasses, fructans are a complex mixture of a large number of isomeric oligomers with a degree of polymerisation ranging from 3 to >100. Accurate monitoring and unambiguous peak identification requires chromatographic separation coupled to mass spectrometry. The mass range of ion trap mass spectrometers is limited, and we show here how monitoring selected multiply charged ions can be used for the detection and quantification of individual isomers and oligomers of high mass, particularly those of high degree of polymerization (DP > 20) in complex plant extracts. Previously reported methods using linear ion traps with low mass resolution have been shown to be useful for the detection of fructans with a DP up to 49. Here, we report a method using high-resolution mass spectrometry (MS) using an Exactive Orbitrap MS which greatly improves the signal-to-noise ratio and allows the detection of fructans up to DP = 100. High-sugar (HS) Lolium perenne cultivars with high concentrations of these fructans have been shown to be of benefit to the pastoral agricultural industry because they improve rumen nitrogen use efficiency and reduce nitrous oxide emissions from pastures. We demonstrate with our method that these HS grasses not only contain increased amounts of fructans in leaf blades but also accumulate fructans with much higher DP compared to cultivars with normal sugar levels

    RNAseq Analyses Identify Tumor Necrosis Factor-Mediated Inflammation as a Major Abnormality in ALS Spinal Cord

    Get PDF
    ALS is a rapidly progressive, devastating neurodegenerative illness of adults that produces disabling weakness and spasticity arising from death of lower and upper motor neurons. No meaningful therapies exist to slow ALS progression, and molecular insights into pathogenesis and progression are sorely needed. In that context, we used high-depth, next generation RNA sequencing (RNAseq, Illumina) to define gene network abnormalities in RNA samples depleted of rRNA and isolated from cervical spinal cord sections of 7 ALS and 8 CTL samples. We aligned \u3e50 million 2X150 bp paired-end sequences/sample to the hg19 human genome and applied three different algorithms (Cuffdiff2, DEseq2, EdgeR) for identification of differentially expressed genes (DEG’s). Ingenuity Pathways Analysis (IPA) and Weighted Gene Co-expression Network Analysis (WGCNA) identified inflammatory processes as significantly elevated in our ALS samples, with tumor necrosis factor (TNF) found to be a major pathway regulator (IPA) and TNFα-induced protein 2 (TNFAIP2) as a major network “hub” gene (WGCNA). Using the oPOSSUM algorithm, we analyzed transcription factors (TF) controlling expression of the nine DEG/hub genes in the ALS samples and identified TF’s involved in inflammation (NFkB, REL, NFkB1) and macrophage function (NR1H2::RXRA heterodimer). Transient expression in human iPSC-derived motor neurons of TNFAIP2 (also a DEG identified by all three algorithms) reduced cell viability and induced caspase 3/7 activation. Using high-density RNAseq, multiple algorithms for DEG identification, and an unsupervised gene co-expression network approach, we identified significant elevation of inflammatory processes in ALS spinal cord with TNF as a major regulatory molecule. Overexpression of the DEG TNFAIP2 in human motor neurons, the population most vulnerable to die in ALS, increased cell death and caspase 3/7 activation. We propose that therapies targeted to reduce inflammatory TNFα signaling may be helpful in ALS patients

    A stochastic automaton shows how enzyme assemblies may contribute to metabolic efficiency

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The advantages of grouping enzymes into metabolons and into higher order structures have long been debated. To quantify these advantages, we have developed a stochastic automaton that allows experiments to be performed in a virtual bacterium with both a membrane and a cytoplasm. We have investigated the general case of transport and metabolism as inspired by the phosphoenolpyruvate:sugar phosphotransferase system (PTS) for glucose importation and by glycolysis.</p> <p>Results</p> <p>We show that PTS and glycolytic metabolons can increase production of pyruvate eightfold at low concentrations of phosphoenolpyruvate. A fourfold increase in the numbers of enzyme EI led to a 40% increase in pyruvate production, similar to that observed <it>in vivo </it>in the presence of glucose. Although little improvement resulted from the assembly of metabolons into a hyperstructure, such assembly can generate gradients of metabolites and signaling molecules.</p> <p>Conclusion</p> <p><it>in silico </it>experiments may be performed successfully using stochastic automata such as HSIM (Hyperstructure Simulator) to help answer fundamental questions in metabolism about the properties of molecular assemblies and to devise strategies to modify such assemblies for biotechnological ends.</p

    Antiepileptic drugs’ tolerability and safety – a systematic review and meta-analysis of adverse effects in dogs

    Get PDF
    <p>Various anti-epileptic drugs (AEDs) are used for the management of idiopathic epilepsy (IE) in dogs. Their safety profile is an important consideration for regulatory bodies, owners and prescribing clinicians. However, information on their adverse effects still remains limited with most of it derived from non-blinded non-randomized uncontrolled trials and case reports.</p><p><span>This poster won third place, which was presented at the Veterinary Evidence Today conference, Edinburgh November 1-3, 2016. </span></p><br /> <img src="https://www.veterinaryevidence.org/rcvskmod/icons/oa-icon.jpg" alt="Open Access" /

    Active Site Mutations Change the Cleavage Specificity of Neprilysin

    Get PDF
    Neprilysin (NEP), a member of the M13 subgroup of the zinc-dependent endopeptidase family is a membrane bound peptidase capable of cleaving a variety of physiological peptides. We have generated a series of neprilysin variants containing mutations at either one of two active site residues, Phe563 and Ser546. Among the mutants studied in detail we observed changes in their activity towards leucine5-enkephalin, insulin B chain, and amyloid β1–40. For example, NEPF563I displayed an increase in preference towards cleaving leucine5-enkephalin relative to insulin B chain, while mutant NEPS546E was less discriminating than neprilysin. Mutants NEPF563L and NEPS546E exhibit different cleavage site preferences than neprilysin with insulin B chain and amyloid ß1–40 as substrates. These data indicate that it is possible to alter the cleavage site specificity of neprilysin opening the way for the development of substrate specific or substrate exclusive forms of the enzyme with enhanced therapeutic potential
    • …
    corecore