48 research outputs found

    Refugees' views of the effectiveness of support provided by their host countries.

    Get PDF
    BACKGROUND: The war in former Yugoslavia, which commenced in 1990, caused the biggest refugee crisis in Europe since World War II. There are numerous research investigations into the trauma and associated problems. However, there is no available publication concerning refugees' own perception of the provided support in host countries. AIMS: To investigate how refugees evaluated support received (helpful or detrimental) and what kinds of support they wish to receive in the future. METHOD: The study participants were 854 refugees from former Yugoslavia settled in the United Kingdom, Germany, and Italy. Alongside demographic data, they were assessed using International Neuropsychiatric Interview (MINI), Life Stressor Checklist-Revised (LSC-R), Manchester Short Assessment of Quality of Life (MANSA), Matrix for Recording Health Care, Social Interventions (MACSI), and an open questions interview. RESULTS: Data revealed that 99.3% of refugees received some kind of support. The most frequent support (98.7%) was primary health care and the least frequent (34.7%) was support in employment and further training. The most helpful (27.5%) was primary health care, and the most detrimental (11.6%) was legal support. The most desired types of support were help in employment (31.8%) and further education/training (20.5%). The educational level of refugees affected their perceptions of support as detrimental or desired. CONCLUSIONS: There are different levels of received and desired support among host countries. There are also differences in the perception of received and desired support with regard to the refugees' educational levels

    Reconsidering figures of merit for performance and stability of perovskite photovoltaics

    Get PDF
    The development of hybrid organic-inorganic halide perovskite solar cells (PSCs) that combine high performance and operational stability is vital for implementing this technology. Recently, reversible improvement and degradation of PSC efficiency have been reported under illumination-darkness cycling. Quantifying the performance and stability of cells exhibiting significant diurnal performance variations is challenging. We report the outdoor stability measurements of two types of devices showing either reversible photo-degradation or reversible efficiency improvement under sunlight. Instead of the initial (or stabilized) efficiency and T as the figures of merit for the performance and stability of such devices, we propose using the value of the energy output generated during the first day of exposure and the time needed to reach its 20% drop, respectively. The latter accounts for both the long-term irreversible degradation and the reversible diurnal efficiency variation and does not depend on the type of process prevailing in a given perovskite cell

    Consensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS procedures

    Get PDF
    Funder: 2017 SGR 329 Severo Ochoa program from Spanish MINECO (Grant No. SEV-2017-0706)Funder: This article is based upon work from COST Action StableNextSol MP1307 supported by COST (European Cooperation in Science and Technology). M. V. K., E. A. K., V. B., and A. Osherov thank the financial support of the United States – Israel Binational Science Foundation (grant no. 2015757). E. A. K., A. A., and I. V.-F. acknowledge a partial support from the SNaPSHoTs project in the framework of the German-Israeli bilateral R&D cooperation in the field of applied nanotechnology. M. S. L. thanks the financial support of NSF (ECCS, award #1610833). S. C., M. Manceau and M. Matheron thank the financial support of European Union’s Horizon 2020 research and innovation programme under grant agreement No 763989 (APOLO project). F. De R. and T. M. W. would like to acknowledge the support from the Engineering and Physical Sciences Research Council (EPSRC) through the SPECIFIC Innovation and Knowledge Centre (EP/N020863/1) and express their gratitude to the Welsh Government for their support of the Ser Solar programme. P. A. T. acknowledges financial support from Russian Science Foundation (project No. 19-73-30020). J.K. acknowledges the support by the Solar Photovoltaic Academic Research Consortium II (SPARC II) project, gratefully funded by WEFO. M.K.N. acknowledges financial support from Innosuisse project 25590.1 PFNM-NM, Solaronix, Aubonne, Switzerland. C.-Q. M. would like to acknowledge The Bureau of International Cooperation of Chinese Academy of Sciences for the support of ISOS11 and the Ministry of Science and Technology of China for the financial support (No 2016YFA0200700). N.G.P. acknowledges financial support from the National Research Foundation of Korea (NRF) grants funded by the Ministry of Science, ICT Future Planning (MSIP) of Korea under contracts NRF-2012M3A6A7054861 and NRF-2014M3A6A7060583 (Global Frontier R&D Program on Center for Multiscale Energy System). CSIRO’s contribution to this work was conducted with funding support from the Australian Renewable Energy Agency (ARENA) through its Advancing Renewables Program. A. F. N gratefully acknowledges support from FAPESP (Grant 2017/11986-5) and Shell and the strategic importance of the support given by ANP (Brazil’s National Oil, Natural Gas and Biofuels Agency) through the R&D levy regulation. Y.-L.L. and Q.B. acknowledge support from the National Science Foundation Division of Civil, Mechanical and Manufacturing Innovation under award #1824674. S.D.S. acknowledges the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (HYPERION, grant agreement No. 756962), and the Royal Society and Tata Group (UF150033). The work at the National Renewable Energy Laboratory was supported by the U.S. Department of Energy (DOE) under contract DE-AC36-08GO28308 with Alliance for Sustainable Energy LLC, the manager and operator of the National Renewable Energy Laboratory. The authors (J.J.B, J.M.L., M.O.R, K.Z.) acknowledge support from the De-risking halide perovskite solar cells program of the National Center for Photovoltaics, funded by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Solar Energy Technology Office. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes. H.J.S. acknowledges the support of EPSRC UK, Engineering and Physical Sciences Research Council. V.T. and M. Madsen acknowledges ‘Villum Foundation’ for funding of the project CompliantPV, under project number 13365. M. Madsen acknowledges Danmarks Frie Forskningsfond, DFF FTP for funding of the project React-PV, No. 8022-00389B. M.G. and S.M.Z. thank the King Abdulaziz City for Science and technology (KACST) for financial support. S.V. acknowledges TKI-UE/Ministry of Economic Affairs for financial support of the TKI-UE toeslag project POP-ART (No. 1621103). M.L.C. and H.X. acknowledges the support from Spanish MINECO for the grant GraPErOs (ENE2016-79282-C5-2-R), the OrgEnergy Excellence Network CTQ2016-81911- REDT, the Agència de Gestiód'Ajuts Universitaris i de Recerca (AGAUR) for the support to the consolidated Catalonia research group 2017 SGR 329 and the Xarxa de Referència en Materials Avançats per a l'Energia (Xarmae). ICN2 is supported by the Severo Ochoa program from Spanish MINECO (Grant No. SEV-2017-0706) and is funded by the CERCA Programme / Generalitat de Catalunya.Abstract: Improving the long-term stability of perovskite solar cells is critical to the deployment of this technology. Despite the great emphasis laid on stability-related investigations, publications lack consistency in experimental procedures and parameters reported. It is therefore challenging to reproduce and compare results and thereby develop a deep understanding of degradation mechanisms. Here, we report a consensus between researchers in the field on procedures for testing perovskite solar cell stability, which are based on the International Summit on Organic Photovoltaic Stability (ISOS) protocols. We propose additional procedures to account for properties specific to PSCs such as ion redistribution under electric fields, reversible degradation and to distinguish ambient-induced degradation from other stress factors. These protocols are not intended as a replacement of the existing qualification standards, but rather they aim to unify the stability assessment and to understand failure modes. Finally, we identify key procedural information which we suggest reporting in publications to improve reproducibility and enable large data set analysis

    Dynamic Network Slicing for the Tactile Internet

    No full text
    “Tactile internet” refers to a network that can support real-time interactions between human operators and remote cyber-physical systems as if they were near to each other. For this, the network should support ultra-low latency communication, often referred to as the 1ms challenge. However, we observe that network requirements, such as latency and band- width, of tactile internet based cyber-physical systems or Tactile Cyber-Physical Systems (TCPS) are not static: they severely fluctuate over time. Therefore, for TCPS, static provisioning of network resources is sub-optimal. For optimal utilization of network resources, we propose a mechanism to, per TCPS flow, dynamically create, destroy and switch network slices, based on the network resources needed at that time. Our solution consists of two main components. First, we develop a clustering algorithm to determine the slices and their specifications required to support a TCPS flow. Second, we leverage Software-Defined Networking (SDN) and P4-programmable switches to enable on- the-fly provisioning and switching of these slices.Virtual/online event due to COVID-19Embedded and Networked System

    Hepatoprotective effect of BPC 157, a 15-amino acid peptide, on liver lesions induced by either restraint stress or bile duct and hepatic artery ligation or CCl4 administration. A comparative study with dopamine agonists and somatostatin.

    No full text
    The hepatoprotective effects of a newly synthesized 15 amino acid fragment code named BPC 157 was evaluated in comparison with the reference standards (bromocriptine, amantadine and somatostatin) in various experimental models of liver injury in rats: 24 h-bile duct+hepatic artery ligation 48 h-restraint stress and CCl4 administration. BPC 157 administered either intragastrically or intraperitoneally, significantly prevented the development of liver necrosis or fatty changes in rats subjected to 24 h bile duct + hepatic artery ligation, 48 h-restraint stress, CCl4 treatment (1 ml/kg i.p., sacrifice 48 h thereafter). The other reference drugs had either little or no protective actions in these models. Noteworthy, the laboratory test results for bilirubin, SGOT, SGPT fully correlated with the macro/microscopical findings. Thus, on the basis of consistent protective effect of BPC 157, possible clinical application in liver diseases is now warranted
    corecore